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a b s t r a c t

Constraints are an important aspect of role-based access control (RBAC) and sometimes
argued to be the principalmotivation of RBAC.While role engineering is proposed to define
an architectural structure of the organization’s security policies, none of the work has
employed constraint mining in migrating a non-RBAC system to an RBAC system to our
knowledge, thus providing themotivation for thiswork. In this paper, we first define awide
variety of constraints,which are the best-knownones to date, and then create a relationship
between the conventional datamining technology and the constraints.We further propose
an anti-association rule mining algorithm to generate the constraints. Experiments on
performance study prove the superiority of the new algorithm.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Role-based access control (RBAC) [1] is the most popular access control model at present that has been widely deployed
in enterprise security management products. In this security model, a set of permissions are assigned to users through roles.
This change on how to assign the permissions often reduces the complexity of access control because the number of users
is generally much larger than that of roles in an organization [2]. Furthermore, it can support three well-known security
principles: least privilege, separation of duties and data abstraction. As a result, RBAC has been implemented successfully in
a variety of commercial systems, such as insurance company [3] andbank [4], andhas become thenorm inmany applications.
Hence how to create a comprehensive framework for defining the architectural structure of RBAC has become a challenging
task before all the benefits of RBAC can be realized [5]. As a solution to facilitate the process to migrate a non-RBAC system
to an RBAC system, role engineering is introduced [6].

Essentially, there are two basic approaches towards role engineering: the top-down and the bottom-up. Under the top-
down approach, roles are derived by carefully analyzing particular business functions and then assigning the needed
permissions to create roles for these business functions [7]. However, this approach is time consuming and costly while
this approach can well reflect the functional requirements of the organization. Under the bottom-up approach, roles can be
aggregated through permissions automatically from the existing user-permission assignments before RBAC is implemented.
Hence, this approach is likely to ignore the business functions of the organization but can generate the architectural structure
of RBAC automatically [8].

In the approach to migrate a non-RBAC system to an RBAC system, however, a key challenge that has not been
adequately addressed so far is how to generate constraints. In other words, most of the existing role engineering approaches
just captured the organization’s business rules, as these relate to access control, and reflect these rules in defining,
naming, structuring, and constructing a valid set of roles. There are no approaches to mine constraints from the existing
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user-permission assignments while constraints are an important aspect of RBAC. A common example is that of mutually
exclusive roles, such as purchasing manager and account payable manager. In most organizations, the same individual will
not be permitted to be amember of both roles, because this creates a possibility for committing fraud. In another case, there
is only one person in the role of chairman in a department. Similarly, the number of roles to which an individual user can
belong could also be limited. We call this cardinality constraint [1].

In this paper, we first define a set of constraints, which include the best-known ones, and then show the relationship
of these constraints with the problem already identified in the data analysis literature. By showing that these constraints
are in essence reducible to the known problem, we can directly borrow the existing implementation solutions and guide
further research in this direction. Finally, we design an anti-association rule mining algorithm to mine these constraints.
Experiments on performance study are also given.

The remainder of this paper is organized as follows. We discuss related work in Section 2. The limitations in existing
application of constructing RBAC systems drive our motivation and Section 3 defines a variety of constraints. Furthermore,
we design a new algorithm based on the traditional algorithm Apriori to find constraints which scan the user-permission
assignments only once. A summary of our experimental results is discussed in Section 4. Finally, Section 5 provides some
insight into our ongoing and future work.

2. Related work

Role engineering is introduced in 1995, which aims to define an architectural structure that is complete, correct and
efficient to specify the organization’s security policies and business functions [6]. It leads to the initial top-down process
oriented approaches for role definition. With the top-down approach, people start from requirements and successively
refine the definitions to result in permissions and roles respectively based on the business functions that decompose
from the business processes. Since there are often dozens of business processes and ten thousands of users, it makes top-
down approach impracticable in medium to large size enterprises. As a result, the researchers have changed the focus
to the bottom-up approach that utilizes the existing user-permission assignments to formulate roles. In the bottom-up,
especially the application of data mining techniques for role extraction and definition has raised interests in the research
community [8]. In [9], Schlegelmilch et al. propose an algorithm ORCA to build a hierarchy of permission clusters using role
mining. However, the algorithm randomly selects a pair whenmore than one pair has themaximumoverlap and permission
can only be found along one role path of the hierarchy. Hence, Vaidya et al. propose a subset enumeration approachRoleMiner
to overcome the above limitation [10].

An inherent problem with all of the above approaches is that there is no formal notion for goodness of a role. Molloy
et al. [11] develop a hierarchical miner to discover good roles based on formal semantic analysis. Zhang et al. [12] present an
algorithm to reduce the administration required for role related assignments through reducing the number of role-to-user
and permission-to-role assignments. Ene et al. [13] use heuristics and graph theory to reduce the graph representations
to find the smallest collection of roles that can be used to implement a pre-existing user-permission assignments. Frank
et al. [14] provide a probabilistic model to analyze the relevance of different kinds of business information for defining
roles that can both explain the given user-permission assignments and describe themeaning from the business perspective.
Takabi et al. [15] define a measure for goodness of an RBAC state and use similarity-based approach for optimal mining of
role hierarchy. Vaidya et al. [16] and Lu et al. [17] theoretically analyze the role mining problem and also give two different
variations of the rolemining problem, call the δ-approx rolemining problemand theminimal noise rolemining problem that
have pragmatic implications. They also show the problem of finding the minimal set of descriptive roles and relationships
that equal to the user-permission assignments is NP-complete problem.

However, the traditional role engineering approaches only identify comprehensive roles and place them into a hierarchy
while constraints in RBAC are very important. It may result in some problems if we are no idea about constraints in RBAC
system.

1. Constraints are a set of imposed rules on RBAC, and they are an important aspect of RBAC. In other words, constraints are
one of themost distinctive and important feature of the RBAC approach.We can get an incomplete architectural structure
of RBAC if there are no constraints;

2. In RBAC system, its emphasis on controlling who has access to operations on what objects is fundamentally different
from information flow security in multi-level secure systems, and therefore can support three well-known security
principles: least privilege, separation of duties and data abstraction. Let us assume that there is a requested permission
set RQ = {p1, p2, p3, p4} (the casual user requires permission p1, p2, p3, p4 to perform the task). Although role set {r1, r2}
can enforce the principle of least privilege for the requested permission set RQ (which means that r1 and r2 can exactly
cover all of the permissions in the requested permission set RQ ). However, this approach about enforcing the principle
of least privilege for the requested permission set may be wrong if there is no idea about constraints in RBAC system. For
example, we do not know whether r1 and r2 are mutually exclusive roles or not;

3. Constraints are a powerful mechanism for laying out higher-level organizational policy. They enable the chief security
officer to lay out the broad scope of what is acceptable and impose this as a mandatory requirement on other security
officers and users who participate in RBAC management. If there is no idea of the constraint in RBAC system, the
administrator cannot do this.



X. Ma et al. / Mathematical and Computer Modelling ( ) – 3

To this aim, this research tries to mine constraints in a feasible way. We first propose a similarity way to represent these
constraints like the traditional association rule mining algorithm Apriori. However, the key problem with the traditional
algorithm Apriori is its computational complexity. It needs to scan the database many times. This is quite infeasible, except
for very small database. Hence we present a new constraint mining algorithm Anti-apriori to address the above problem
which just scans the database only once that makes it feasible for even large database. The experimental results are tested
to show the effectiveness of our findings.

3. Constraint mining

3.1. Preliminaries

Wedevelop thematerial in this paper in the context of the NIST standard, themostwidely known RBACmodel. It consists
of RBAC0, RBAC1, RBAC2 and RBAC3. The last two incorporate separation of duty constraint. For the sake of simplicity, we
do not consider sessions in this paper.

Definition 1 (RBAC Model). The RBAC model has the following components:

• U, R, P , users, roles and permissions respectively;
• PA ⊆ P × R, a many-to-many mapping of permission-to-role assignments;
• UA ⊆ U × R, a many-to-many user to role assignment relationships;
• auth_perms(R) = {p ∈ P|(p, R) ∈ PA}, the mapping of role R onto a set of permissions.

We can use an m × n binary matrix M to describe the relationships between users and permissions before RBAC is
implemented. Where m is the number of users and n is the number of permissions. The element M{i, j} = 1 denotes that
the ith user has the jth permission or the jth permission belongs to the ith user. We use ui (i = 1, . . . ,m) to indicate the
ith user and user_perms(ui) (i = 1, . . . ,m) to indicate the set of permissions assigned to the ith user, pj (j = 1, . . . , n) to
indicate the jth permission and perm_users(pj) (j = 1, . . . , n) to indicate the set of users that possess permission pj.

When RBAC system has been constructed through role engineering, we can use anm× k binary matrix N to describe the
relationships between users and roles. Where m is the number of users and k (k ≤ n) is the number of roles. The element
N{i, j} = 1 denotes that the ith user has the jth role or the jth role belongs to the ith user. We use ui (i = 1, . . . ,m) to
indicate the ith user and user_roles(ui) (i = 1, . . . ,m) to indicate the set of roles assigned to the ith user, rj (j = 1, . . . , k)
to indicate the jth role and role_users(rj) (j = 1, . . . , k) to indicate the set of users that possess role rj. Hence, we can define
a variety of constraints as follows.

Definition 2 (Mutually Exclusive Roles). Given a set of roles rs ⊆ R, we say ri ∈ rs and rj ∈ rs (i ≠ j) are mutually exclusive
roles if role_users(ri) ∩ role_users(rj) = ∅. We will use the notation ri ∧ rj to specify that role ri and rj are mutually exclusive
roles.

This constraint in terms of UA specifies that one individual cannot be amember of bothmutually exclusion roles. In other
words, the same user can be assigned to at most one role in a mutually exclusive role set. For example, the user cannot be a
member of both accounts-manager role and purchasing-manager role. More general, we allow have more than one role in
the notation. For example, r1r2 ∧ r3r4 describes that the user cannot have both the role set {r1, r2} and {r3, r4}. Analogously,
we give the definition of mutually exclusive permissions.

Definition 3 (Mutually Exclusive Permissions). Given a set of permissions ps ⊆ P , we say pi ∈ ps and pj ∈ ps are mutually
exclusive permissions if pi ∈ auth_perms(ri), and pj ∉ auth_perms(ri) for all ri ∈ R. Wewill use the notation pi ∧ pj to specify
that permission pi and pj are mutually exclusive permissions.

This constraint in terms of PA specifies that the mutually exclusive permissions cannot be assigned to the same role. For
example, the permission to issue checks and the permission to audit the operation should not be assigned to the same role.
More general, we allow have more than one permission in the notation. For example, p1p2 ∧ p3p4 describes that the role
cannot have both the permission set {p1, p2} and {p3, p4} or {p1, p2} and {p3, p4} cannot be given to the same role.

Definition 4 (Cardinality Constraint of Role). The cardinality constraint of role is defined as the maximum number of roles
to which an individual user can belong. We will use the notation max(r) to specify this constraint.

In RBAC, the principle of least privilege is one of the most important principles in the design of protection mechanisms
for secure computer systems. Whenever possible, a user should be given no more access to resources than is required to
complete the task at hand. In other words, the computer system should be able to determine the minimum set of privileges
required for the user to perform the task and guarantee that the user is only granted those privileges and no more. Let us
assume that the requested permission set RQ = {p1, p2, p3, p4, p5, p6}, auth_perms(r1) = {p1, p2, p3}, auth_perms(r2) =

{p3, p4} and auth_perms(r3) = {p5, p6}. In this situation, role set {r1, r2, r3} can enforce the principle of least privilege for the
requested permission set RQ if there is no constraint on themaximum number of roles which an individual user can belong.
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If each user has not more than two roles, in this situation there is no role set can satisfy the principle of least privilege for the
requested permission set. Hence, this constraint is very important in RBAC systems, especially for enforcing the principle of
least privilege for the requested permission set. Similarly, we can define the cardinality constraint of user and permission
as follow.

Definition 5 (Cardinality Constraint of User). The cardinality constraint of user is defined as the maximum number of users
to which a role can have. For example, there is only one person in the role of chairman of a department. We will use the
notation max(u) to specify this constraint.

Definition 6 (Cardinality Constraint of Permission). The cardinality constraint of permission is defined as the maximum
number of roles to which a permission can belong. We will use the notation max(p) to specify this constraint.

In data mining field, mining of association rules has become a fundamental problem and it has been studied extensively.
Many efficient algorithms such as FP-growth, Apriori and Eclat have been developed to solve this problem on databases
containing transactions [18]. The following is a formal statement of the problem.

Let D be a set of transactions, where each transaction T is an itemset that T ⊆ I (A set of items X ⊆ I is called an itemset,
where I = {i1, i2, . . . , in} is a set of attributes over the binary domain {0, 1}). A tuple T of the database D is represented by
identifying the attributeswith value 1where associatedwith each transaction is a unique identifier.We say that a transaction
T contains an itemset X , if X ⊂ T . An association rule is an implication of the form X ⇒ Y , where X ⊂ T , Y ⊂ T , and
X ∩ Y = ∅. The rule X ⇒ Y holds in the transaction set D with confidence c if c% of transactions in D that contain X also
contain Y . The rule X ⇒ Y has support s in the transaction setD if s% of transactions inD contain X∪Y . The problemofmining
association rules is to generate all association rules that have certain user-specified minimum support (called minsup) and
minimum confidence (calledminconf ).

Before RBACmodel is implemented, there are only user-permission assignments in the system, in this situationwe regard
permission as attribute, the collection of all user-permission assignments as a set of transactions and each user-permission
assignment as a transaction. Then we can define an anti-association rule between permissions as follows.

Definition 7 (Anti-Association Rule between Permissions). An anti-association rule between permissions is an implication of
the form X ⇒ Y , where X ⊂ P, Y ⊂ P, X ∩ Y = ∅ and user_perms(ui) ∩ X = ∅ ∨ user_perms(ui) ∩ Y = ∅ for each
ui ∈ U (i = 1, . . . ,m).

In reality, access control configurations in any large organization are noisy [19]. Hence, we relax the restriction that
the anti-association rule X ⇒ Y holds in the user-permission assignments if the rule has certain user-specified minimum
support and confidence. There are three cases to compute the support and confidence of an anti-association rule between
permissions as follows.

(1) X ⇒ Y : In this situation, we denote the confidence as the ratio of the numUsers(XY ) to the numUsers(X) (where
numUsers(XY ) is the number of users which possess permission set X and do not contain permission set Y at the
same time that presented in the user-permission assignments, numUsers(X) is the number of users which possess the
permission set X in the user-permission assignments), the support as the ratio of the numUsers(XY ) to the numUsers(All)
(where numUsers(All) is the total number of users in the user-permission assignments);

(2) X ⇒ Y : In this situation, we denote the confidence as the ratio of the numUsers(XY ) to the numUsers(X) (where
numUsers(XY ) is the number of users which possess permission set Y and do not contain permission set X at the same
time that presented in the user-permission assignments, numUsers(X) is the number of users which do not possess the
permission set X in the user-permission assignments), the support as the ratio of the numUsers(XY ) to the numUsers(All);

(3) X ⇒ Y : In this situation, we denote the confidence as the ratio of the numUsers(X Y ) to the numUsers(X) (where
numUsers(X Y ) is the number of userswhich donot possess permission setX and Y that presented in the user-permission
assignments), the support as the ratio of the numUsers(X Y ) to the numUsers(All).

Similarity, when RBAC system has been constructed through role engineering, we regard each role as attribute, collection
of all user-role relationships as transactions and each user-role assignment as a transaction. Then we can define an anti-
association rule between roles as follows.

Definition 8 (Anti-Association Rule between Roles). An anti-association rule between roles is an implication of the form
X ⇒ Y , where X ⊂ R, Y ⊂ R, X ∩Y = ∅ and user_roles(ui)∩X = ∅∨user_roles(ui)∩Y = ∅ for each ui ∈ U (i = 1, . . . ,m).
The anti-association rule X ⇒ Y holds in the user-role assignments if the rule has certain user-specified minimum support
and confidence.

3.2. Algorithm

In RBAC system, the constraints should be enforced. In other words, we need generate a set of constraints when we
migrate a no-RBAC system to an RBAC system. In this subsection, we will use the algorithm for mining association rules to
solve this problem. We now briefly present the Apriori algorithm as follows.
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The process of Apriori algorithm can be decomposed into two sub-processes:

(1) Scan the database to find all combinations of items whose support is greater than minsup. Call those combinations
frequent itemsets. If the itemsets has k items, we call it k-frequent itemsets. In order to count the support of each
itemsets, the algorithm needs to scan the database once;

(2) Generate the desired rules. The general idea is that if, say, ABCD and AB are frequent itemsets, then we can determine
if the rule AB ⇒ CD holds by computing the ratio r = support(ABCD)/support(AB). Only if r ≥ minconf , then the rule
holds.

Now we design an anti-association rule mining algorithm to generate the constraints as follows (Here we just consider
how to generate mutually exclusive permissions from user-permission assignments because the same algorithm also
can generate mutually exclusive roles from user-role assignments. We also do not take into account other cardinality
constraints for the sake of simplicity). We split the anti-association rule mining algorithm between permissions into three
phases:

Step1. Scan the user-permission assignments matrix M to find all combinations of permissions whose support is greater
than minsup. We denote the set of all frequent permission set as F ;

Step2. Set each element in M{i, j} (i = 1, . . . ,m, j = 1, . . . , n) as M{i, j} in the user-permission assignments, we denote
the binary matrix as M . Then scan it to find all combinations of permissions whose support is greater than minsup.
We denote the set of all frequent permission set as F ;

Step3. Generate rules from the frequent permissions found in Steps 1 and 2 using the method like the Apriori.

Algorithm 1 gives the detailed steps about how to generate mutually exclusive permissions. The algorithm consists
of three phases. The first phase consists of lines 2–6. The for loop in line 2 iterates over all the permissions in the user-
permission assignments and generates the 1-frequent permission set F1 and F 1. Line 3 calculates the support of pi and pi.
Line 4 inserts the 1-frequent permission pi into F1. Line 5 inserts the 1-frequent permission pi into F 1.

Phase 2 consists of lines 8–14. The for loop in line 8 iterates over the set of all (k − 1)-frequent permission set Fk−1 to
generate the k-frequent permission set Fk. The for loop in line 11 iterates over the set of all (k − 1)-frequent permission set
F k−1 to generate the k-frequent permission set F k. The frequent permission set generation procedure returns the set of all
k-frequent permission set. The procedure of FrequentPermissionGen consists of lines 16–22. The for loop in line 16 iterates
over all the (k− 1)-frequent permission set to generate the k-frequent permission set. We assume that the permissions in a
permission set are ordered by the subscript. Line 18 finds the users containing X ∪ Y . Line 19 computes the number of users
containing X ∪Y and then gets the support sf. Line 20 finds the k-frequent permission set that satisfy the minimum support.
The idea behind lines 18 and 19 is based on the following theorem.

Theorem 1. For any permission set PS = {p1, p2, . . . , pk} ⊆ 2P , where pi ∈ P (i = 1, . . . , k), we have

perm_users(PS) = perm_users(p1) ∩ · · · ∩ perm_users(pk)
numUsers(PS) = countNum(perm_users(PS)).

The proof is trivial. We use an example to describe this theorem. For example, suppose perm_users(p1) = {u1, u2, u3},
perm_users(p2) = {u1, u2, u4}, which means p1 belongs to u1, u2, u3, and u1, u2, u4 all have the permission p2, we have

perm_users({p1, p2}) = perm_users(p1) ∩ prem_users(p2)

= {u1, u2, u3} ∩ {u1, u2, u4} = {u1, u2}

numUsers({p1, p2}) = countNum(perm_users({p1, p2}))

= countNum({u1, u2}) = 2.

Phase 3 consists of lines 25–30. The for loop in line 25 iterates over the set of all frequent permission set F to generate
the anti-association rules like X ⇒ Y . The for loop in line 28 iterates over the set of all frequent permission set F and F to
generate the anti-association rules like X ⇒ Y or X ⇒ Y . The general idea behind line 29 is that if, say, p1p2 is 2-frequent
permission set in F2, p3p4 is 2-frequent permission set in F 2, thenwe can determine if the anti-association rule p1p2 ⇒ p3 p4
holds by computing the ratio

r =
support(p1p2p3p4)

support(p1p2)
=

countNum(perm_users({p1, p2, p3, p4}))
countNum(perm_users({p1, p2}))

,

only if r ⩾ mincof , then the rule holds.
The algorithm has two improvements. The key problem with the algorithm Apriori is its computational complexity. It

needs to scan the user-permission assignments many times. This is quite infeasible, except for very small user-permission
assignments. However, our algorithm scans the user-permission assignments only once that makes it feasible for even large
data sets. Furthermore, the algorithm can generate the anti-association rules as the constraints at the same time.
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Algorithm 1 Anti-apriori algorithm

Require: D ≡ (M,N,UPM×N,minsup,minconf, F, F)
Require:M, N, the number of users and permissions
Require: UPM×N represents the user-permission assignments
Require:minsup, minconf, the minimum support and confidence
Require: F, F represents all the frequent permission set in the matrixM, M
1:{Generate the frequent 1-permission set}
2: for (i = 1; i ≤ N; i + +) do
3: sf (pi) = numUsers(pi)/M , sf (pi) = numUsers(pi)/M
4: insert pi, sf (pi), perm_users(pi) into F1 if sf (pi) ≥ minsup
5: insert pi, sf (pi), perm_users(pi) into F 1 if sf (pi) ≥ minsup
6: end for
7:{Generate the frequent k-permission set and k-permission set}
8: for (k = 2; Fk ≠ ∅; k++) do
9: Fk = FrequentPermissionGen(Fk−1,minsup)
10:end for
11:for (k = 2; F k ≠ ∅, k++) do
12: F k = FrequentPermissionGen(F k−1,minsup)
13:end for
14: F = ∪kFk , F = ∪kF k
15:{FrequentPermissionGen(Tk−1,minsup)}
16:for X and Y are in Tk−1 do
17: if first k-2 permissions of X and Y are the same then
18: perm_user(X ∪ Y ) = perm_users(X) ∩ perm_user(Y )
19: sf (X ∪ Y ) = numUsers(perm_users(X ∪ Y ))/M
20: insert X ∪ Y , sf (X ∪ Y ), perm_users(X ∪ Y ) into Tk if sf (X ∪ Y ) ≥ minsup
21: end if
22:end for
23:Return Tk
24:{Generate the anti-association rules}
25:for each Y in F do
26: Generate rules using the same method as Apriori algorithm
27:end for
28:for each X in F and Y in F do
29: Generate rules using the same method as Apriori algorithm
30:end for

3.3. Running example

The following example demonstrates the effectiveness of the proposed algorithm. Assume a hypothetical organization
has 4 users and 5 permissions. Table 1 shows the relationship matrix with the assignment of permissions to users. Now we
apply the algorithm to find the frequent permission sets and then generate the constraints as follows.

(1) Phase 1 generates the 1-frequent permission set F1, F 1

(a) The set of users that have possessed each permission can be got as follows:
perm_users(p1) = {u1, u2, u3}, perm_users(p2) = {u1, u2, u3, u4}

perm_users(p3) = {u1, u2, u4}, perm_users(p4) = {u3}

perm_users(p5) = {u2}.

(b) Then we can get the support of each permission as follows:
sf (p1) = numUsers(p1)/4 = 0.75, sf (p2) = numUsers(p2)/4 = 1
sf (p3) = numUsers(p3)/4 = 0.75, sf (p4) = numUsers(p4)/4 = 0.25
sf (p5) = numUsers(p5)/4 = 0.25.

(c) Then we can get the 1-frequent permission set F1 as follows (whereminsup = 0.5):
F1 = {(p1, u1u2u3, 0.75)(p2, u1u2u3u4, 1)(p3, u1u2u4, 0.75)}.

(d) The set of users that have not possessed each permission can be got as follows:
perm_users(p1) = {u4}, perm_users(p3) = {u3}

perm_users(p4) = {u1, u2, u4}, perm_users(p5) = {u1, u3, u4}.
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Table 1
Sample matrix for an example organization.

p1 p2 p3 p4 p5

u1 1 1 1 0 0
u2 1 1 1 0 1
u3 1 1 0 1 0
u4 0 1 1 0 0

(e) Then we can get the support of each permission as follows:
sf (p1) = numUsers(p1)/4 = 0.25, sf (p3) = numUsers(p3)/4 = 0.25
sf (p4) = numUsers(p4)/4 = 0.75, sf (p5) = numUsers(p5)/4 = 0.75.

(f) Then we can get the 1-frequent permission set F 1 as follows (whereminsup = 0.5):
F 1 = {(p4, u1u2u4, 0.75)(p5, u1u3u4, 0.75)}.

(2) Now, Phase 2 finds the frequent permission sets. The first iteration finds the 2-frequent permission set F2, F 2:

sf (p1, p2) = 0.75, sf (p1, p3) = 0.5, sf (p2, p3) = 0.75, sf (p4, p5) = 0.5.

Then we get the 2-frequent permission set F2, F 2 as follows:

F2 = {(p1p2, u1u2u3, 0.75) (p1p3, u1u2, 0.5)(p2p3, u1u2u4, 0.75)}
F 2 = {(p4p5, u1u4, 0.5)}.

(3) The next iteration of Phase 3 finds the 3-frequent permission set F3:

F3 = {(p1p2p3, u1u2, 0.5)}.

(4) Phase 3 generates all the candidate anti-association rules based on Definition 7

p3 ⇒ p4(confidence = 1), p4 ⇒ p5(confidence = 0.67).

If we set minconf = 0.6, we can get the resulting anti-association rule is p3 ⇒ p4 and p4 ⇒ p5 (Hence when a casual
user wants to get the requested permissions p3, p4 to complete the task at hand, the administrator cannot allocate the
permissions to the user).

4. Experimental results

In this section, wewill implement the proposed algorithm ofmining constraints on an Intel (R) Core (TM)D 2.2Gmachine
with 2 GB memory to evaluate how well our algorithm performs using different metrics like in [20]. The running platform
is Windows XP.

4.1. The performance of the algorithm

To study the performance of our algorithm, we generate the synthetic test data as follows. First, the maximum number
of users and permissions are created respectively. Then we use for loop to create the relationships between users and
permissions. For each user, a randomnumber of permissions are chosen. The value of each element in thematrix is randomly
chosen as 0, indicating that the user has no such permission, or 1, indicating that the user has such permission. Finally, we
get the relationships between users and permissions.

We present the evaluation of our algorithmwith Apriori on two different user-permission assignments. For the first set of
assignments, we fix the number of users, while changing the number of permissions. Table 2 shows the test parameters. Each
test is repeated ten times to evaluate the performance of our algorithm.We are interested in two things: the number of rules
generated by the Anti-apriori algorithm, and how quickly it finds it. Fig. 1(a) shows the average number of rules found by the
Anti-Apriori algorithm in different values of minimum support. From the figure we can see that our algorithm can generate
a certain amount of rules. It means that our algorithm can reflect more the real organization’s security requirements. Hence,
it can decrease the risk for the security system. Fig. 1(b) shows the average search time under the different number of
permissions. Here, the search time shows the feasibility of our approach, taking account much more permissions. Indeed,
on the largest user-permission assignments, our algorithm also runs quite fast. This is reasonable because we scan the user-
permission assignments only once to compute the support of frequent permission set.

In the second experiments, we fix the number of permissions, while changing the number of users. Table 3 shows the
test parameters. Fig. 2(a) shows the number of rules under the second set of assignments for various minimum supports,
while Fig. 2(b) shows the search time under the different number of users. We also can see that our algorithm costs less
time and generates a certain amount of rules than Apriori. If the number of permissions and users in the user-permission
assignments is larger, the advantage of our algorithm will be more obvious.
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Table 2
Parameter settings for testing performance (Fixed users,
varying permissions).

|User| |Permission|

data1 500 50
data2 500 80
data3 500 120
data4 500 150

(a) Number of rules. (b) Search time (minconf = 0.35).

Fig. 1. Performance comparison under the fixed number of users.

Table 3
Parameter settings for testing performance (Fixed permis-
sions, varying users).

|User| |Permission|

data1 300 100
data2 400 100
data3 600 100
data4 1000 100

(a) Number of rules. (b) Search time (minconf = 0.35).

Fig. 2. Performance comparison under the fixed number of permissions.

4.2. The accuracy of the algorithm

In order to study the accuracy of our algorithm, we create another synthetic data set. It performs as follows. First, we set
a set of mutually exclusive permissions, the maximum number of users and permissions respectively. Then we use for loop
to create the relationships between users and permissions. For each user, a random number of permissions are chosen. The
value of each element in thematrix is randomly chosen as 0, indicating that the user has no such permission, or 1, indicating
that the user has such permission. If the user has two mutually exclusive permission sets, we will set one of them to 0.

Fig. 3(a) shows the average accuracy of the results that it finds in different minimum supports under |User| =

500, |Permission| = 150. From the figure, we can see that, when the value of the minimum support is low, there is a high
accuracy. As the value of the minimum support increases, the accuracy of the results will decrease. This is because the
algorithm is always able to generate more frequent permission set under the low minimum support. However, all of the
accuracy is more than 70%, which means that our algorithm can generate quality results. Fig. 3(b) shows the accuracy of
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(a) |User| = 500, |Permission| = 150. (b) |User| = 1000, |Permission| = 100.

Fig. 3. Accuracy comparison under the different parameters.

the results that it finds in different minimum supports under |User| = 1000, |Permission| = 100. Again, the accuracy of the
algorithm is quite good, with the largest data and largest minimum support getting approximately to 75%.

5. Conclusions and future work

While there are many role mining approaches have been proposed recently, none of them considered how to mine
constraints. It may fail to reflect the constraints in the security systems. In this paper, we present a constraint mining
approach based on the association rule mining algorithm. We first define a variety of constraints and also propose an anti-
association rulemining algorithm to generate themutually exclusive permissions. It can findmutually exclusive permissions
that just scans the database only once, while the traditional association rule mining method need to scan database many
times. We carry out the experiments to illustrate the effectiveness of the proposed techniques. As a result, the proposed
approach has superior performance to traditional algorithm in both speed and generating mutually exclusive permissions.

The current implementation for anti-association rule mining generates the mutually exclusive permissions that are
weighted purely on frequency. Hence, if a permission set is only given together to a small number of users, it may not
be identified by the algorithm. We intend to investigate this to create a set of tools for mining the mutually exclusive
permissions based on weights. Moreover, we will try to introduce the semantic information to further refine the potential
constraints.
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