
Wuhan University J ournal of Natural Sciences 　Vol. 11 　No. 5 　2006

Vol. 11 No. 5 2006 131121319

Art icle ID :100721202 (2006) 0521311209

A Fo r m a l Mo d e l f o r B P EL4WS D e s c rip t i o n
of We b S e r vi c e Co mp o s i t i o n

□ GU Xiwu , LU Zhengding

College of Computer Science and Technology , Huazhong
University of Science and Technology , Wuhan 430074 ,
Hubei , China

Abs t rac t : Communicating Sequential Processes (CSP) is a
kind of process algebra , which is suitable for modeling and
verifying Web service composition. This paper describes how
to model Web service composition with CSP. A set of rules
for translating composition constructor of Business Process
Execution Language for Web Services (BPEL4WS) to CSP
notations is defined. According to the rules that have been de2
fined , the corresponding translation algorithm is designed and
illustrated with examples . The methods for model checking ,
model verification and model simulation are also introduced.

Ke y w ords : communicating sequential processes ; Web
service ; Web service composition ; business process execution
language for Web services

CLC number : TP 311

Received da t e : 2006203215
Founda t ion i t em : Supported by the National Natural Science Foun2
dation of China (60403027) , the Natural Science Foundation of Hubei
Province(2005ABA258) , and the Open Foundation of State Key La2
boratory of Software Engineering (SKLSE05207)
Biography : GU Xiwu(19672) , male , Ph. D. candidate , research di2
rection : Web service , semantic Web and middleware. E2mail : guxw_
wang @sina. com.
 To whom correspondence should be addressed. E2mail :zdlu4409 @
public. wh. hb. cn

0 　Int roduction

W
eb service composition denotes the situation that a cli2
ent’s or a client agency’s request can not be satisfied

by a single Web service , but by combining some of available
component Web services. The component Web services might
interact with each other concurrently by communication and
exchanges of messages to carry out the task requested by the
client . So Web service composition will involve in concurren2
cy , synchronization and communication of component Web
service. Obviously , a formal model of Web service composi2
tion is needed to guarantee the correctness of concurrency ,
synchronization and behavior of Web service composition.

In the researching field of Web service composition , there
are two trends coming together attempt to deal with the prob2
lems mentioned above. On one side , the Web service composi2
tion is described in workflow specifications like Business
Process Execution Language for Web Services
(BPEL4WS) [1] . The composition of the flow is still manually
obtained. On the other side , the semantic Web community fo2
cuses on reasoning about Web resources with terms defined in
ontology. Although two approaches adopt different technical
mechanism , they all need suitable formal model for descri2
bing , checking and verifying composite Web service so that
correctness of Web service composition can be guaranteed.

Research papers founded in this field have proposed vari2
ous formal models such as Petri2net , Pi2calculus , linear logic ,
etc. Web Services Flow Language (i. e. WSFL) [2] , which is a
net2oriented language originated from workflow language , can
be regarded as Colored Petri2Net (i. e. CPN) . Hamadi and
Benatallah[3] proposed a Petri2Net based algebra for compos2
ing Web services. The formal semantics of the composition

1131

GU Xiwu et al :A Formal Model f or BPEL4WS Description ⋯

operators is expressed in terms of Petri2Net by providing
a direct mapping from each operator to a Petri2Net con2
struction. Thus , any service expressed using the algebra
constructs can be translated into a Petri2Net representa2
tion. Aalst and Hofstede[4] developed a Petri2Net2based
workflow analyzer to enable the automatic verification of
workflow process specified with Petri2Net . Rao Jinghai[5]

proposed a solution to automatic semantic Web service
composition based on linear logic. In the solution , the
Web services and the user’s requirement are both speci2
fied by DAML2S ServiceProfile. A translator is responsi2
ble for translating them into linear logic formulate. Thus
the description of existing Web service is encoded as line2
ar logic axioms , and the requirement to the composite
service are specified in the form of a linear logic sequence
to be proven. Lumpe[6] developed a formal language for
software composition based on a variant of Pi2calculus
and defined a Java2based composition system.

Hoare ’ s communicating sequential processes
(CSP) [7 ,8] is another kind of formal model for describing
and modeling concurrent systems whose component
processes interact with each other by communication. In
this paper , we adopt CSP to describe and to model Web
service composition . We study the BPEL4WS specifica2
tion and extract the composition constructors of
BPEL4WS , then establish a set of mapping rules for
translating composition constructors of BPEL4WS to CSP
notations. We have designed a translation algorithm for
translating BPEL4WS document to CSP model , which
can be used to check and verifying BPEL4WS implemen2
tation with model verification tools of CSP.

1 　Basic Concep tion of CS P

CSP is a model language for describing concurrent
and distributed computation. The CSP model is based on
the idea that several sequential processes are running in
parallel to each other. A CSP program is a static set of
explicit processes. Pairs of processes communicate syn2
chronously by naming each other in input and output
statements.
1. 1 　Eve nt and Proces s

In CSP specification , an event is defined as an action
without duration. Events can also be named as actions or
commands. A process is defined as the set of events that
are relevant . This set is called alphabet . The behavior of
a process is defined by a set of process names and opera2

tors. The following conventions are used in CSP nota2
tion :

① Words in lower2case letters denote distinct
events , e. g. a, b, c, d.

② Words in upper2case letters denote specific de2
fined processes , e. g. P, Q , R.

③ The alphabet of Process P is denoted asαp .
Let x be an event and let P be an process , x ∈αp ,

then
x → P

describes a process that first engages in the event x and
then behaves exactly like P. Note that → operator al2
ways takes a process on the right and a single event on
the left . Thus we can carefully distinguish the concept of
an event from that of a process that engages in events.
Event x is called prefix of process P. A process descrip2
tion that begins with a prefix is said to be guarded.

If x and y are distinct events , then
(x → P | y →Q)

describes a process which initially engages in either events
x or y. Since x and y are different events , the choice be2
tween P and Q is determined by the first event that actu2
ally occurs.

The CSP specification also defines two special
processes named SKIP and STOP. The process that nev2
er actually engages in any of the events is called STOP.
SKIP is defined as a process that does nothing but termi2
nate successfully.
1. 2 　Rec urs ion

In CSP specification , a process can be defined recur2
sively to describe repetitive behaviors. For example ,

clock = (tick →clock)
describes a clock which always tick. If F(X) is a guarded
expression containing the process name X , then the
process X can be defined recursively as :

X = F(X) .
1. 3 　Communication

In CSP specification , communications between con2
current processes is regarded as special class of an event.
A communication is described by a pair of c. v where c is
the name of the communication channel and v is the value
of messages that pass.

A process which first outputs v on the channel c and
then behaves like P is defined as

c !v → P
　　The only event in which this process is initially pre2

pared to engage is communication event c !v.

2131

Wuhan University J ournal of Natural Sciences 　Vol. 11 　No. 5 　2006

A process which is initially to input any value x on
the channel c , and then behave like P , is defined as

c ?x → P
1. 4 　Concurre nc y

If P and Q are processes , then the notation
P | | Q

denotes the process which behaves like the system com2
posed of processes P and Q interacting in synchroniza2
tion.
1. 5 　Se que ntial Proces s es

If P and Q are sequential processes with the same al2
phabet , their sequential composition

P; Q
is a process that first behaves like P; but when P termi2
nates successfully , (P; Q) continues by behaving as Q.

A process P which repeats similar actions is denoted
as 3 P = P; P; P⋯

If x is a program variable and e is an expression and
P a process , then

(x ∶= e; P)

is a process that behaves like P , except that the initial
value of x is assigned by the value of expression e. Initial
values of all other variables are unchanged. Assignment
by itself can be given a meaning by

(x ∶= e) = (x ∶= e;SKIP)

　　If P and Q are processes , then
P <| b >| Q (P if b else Q)

is a process which behaves like P if the initial value of b is
true , or like Q if the initial value of b is false.

If iterative process P is performed until the given
Boolean condition b no longer holds true , then iterative
process P will be written as b·Q.

2 　Modeling We b S ervice Comp osition
wit h CS P

　　In order to describe a Web service composition using
CSP , a relationship between conceptions of Web services
composition and CSP is established first . A component
Web service is represented by a CSP process. Interaction
between component Web services such as invoke , re2
quest , response can be represented by a CSP communica2
tion event . Let’s view the example shown in Fig. 1.

Figure 1 describe a composite Web service that can
handle a purchase order from client agency. The compos2
ite service is composed of three component services : Or2
der Service , Ship Service , and Invoice Service. On re2

Fig. 1 　A composite Web service example

ceiving a purchase order from client , the Order service
will initiates Ship service and Invoice service concurrently
by sending them the message PO along communication
channels shipping and invoicing respectively. Ship and
Invoice services will reply message Ship Info and Invoice
to Order service along the same channel after they have
carried out the shipping schedule and price calculation re2
spectively. At last Order service will send Ship Info and
Invoice back to client . Fig. 1 shows that : The Order
Service communicates with Client Agency , Ship Service
and Invoice Service along channel purchasing , shipping
and invoicing respectively and the messages exchanged
with each other are PO , Ship Info and Invoice.

So we can model Order Service as a CSP process Or2
derServiceProcess which is defined as :

OrderServiceProcess = purchasing ?PO →(shipping !
PO →SKIP| | invoicing !PO →SKIP) ; (shipiping ?Ship Info
→SKIP| | invoicing ?Invoice →SKIP) ; (purchasing !Invoice
→SKIP| | purchasing !Ship Info →SKIP) .

Similarly , the Ship service and Invoice service are
modeled as :

ShipServiceProcess = shipping ?PO →shipping ! Ship2
Info →SKIP ;

InvoiceServiceProcess = invoicing ?PO →invoicing !
Invoice →SKIP ;

Finally , the composite process can be modeled as :
CompositeProcess = OrderServiceProcess| | ShipSer2

viceProcess| | InvoiceServiceProces.

3 　Mapping B PEL4WS t o CS P

　　BPEL4WS is an emerging standard for specifying
and executing workflow specifications for Web service
composition invocation. BPEL4WS provides a language
for the formal specification of business processes and bus2
iness interaction protocols. BPEL4WS specification de2
fines following constructors to describe the behavior of a

3131

GU Xiwu et al :A Formal Model f or BPEL4WS Description ⋯

composite business process , as shown in Table 1.
Given a business process is described by BPEL4WS

specification , however , it will also raise the question of
whether this composition is verified , is there any poten2
tial deadlock and whether the correctness of concurrency
and synchronization can be guaranteed. Technically
BPEL4WS lacks in verification of composite Web service.
In order to systematically evaluate the capabilities and
limitations of BPEL4WS , P. Wohed et al [9] proposed a
framework based on existing workflow and communica2
tion patterns that could be used for an in2depth analysis
of BPEL4WS. H. Foster et al [10] translated BPEL4WS
program into FSP process and verified FSP process by

L TSA tool. If BPEL4ES implementation can be modeled
by CSP , we can verify composite Web service by means
of CSP’s model verification tools.

To ease the modeling of the BPEL4WS against
CSP , the BPEL4WS activities listed in Table 1 are divid2
ed into four groups : structure , concurrent ,primitive and
compensation. Structure represents structured activities
executing on the traditional structured programming de2
sign principles of sequence , selection and iteration. Con2
current specifies the parallel activities. Primitive repre2
sents those activities that are atomic. Compensation ac2
tivities provide the mechanism for dealing with execution
error and execution rollback.

Table 1 　BPEL4WS Constructors

Process Top level abstract process

Partners Web services the process interact with

Variables Data used by the process(message data)

CorrelationSets Dependencies between messages

Primitive activities

Invoke Invoke an operation on a partner

Receive Receive invocation from a partner

Reply Send a reply message in partner invocation

Assign Data assignment between containers

Throw Detect processing error and throws exception

Wait Execution stops for a given time period

Empty Do nothing

Terminate Terminate a Service Instance

Compensation activities
Fault Handlers
CompensationHanler

Deals with faulty conditions
Undo an action

Structured activities

Sequence Execute activities sequentially

While Iterate execution of activities until conditions violated

Switch
Test conditional branch and execute corresponding activi2
ties

Pick
Wait the occurrence of one of a set of events and then per2
forms the activity associated with the event that occurred

Concurrent activities Flow Execute activities in parallel

　　In order to translate BPEL4WS notation to CSP no2
tation , a relationship between the conceptions of
BPEL4WS and ones in the CSP must be established too.
A business process described by BPEL4WS corresponds
to a CSP’s process. Various activities that describe the
behavior of a business process can also be mapped to
processes of CSP. A partnerLink that characterizes the
interaction between a pair of Web Service can be transla2
ted to an inter2process communication channel of CSP.
Variables stand for message of communication. Table 2
lists the conceptions mapping between BPEL4WS and
CSP.

Table 2 　Conceptions mapping between BPEL4WS and CSP

Conceptions of BPEL4WS Conceptions of CSP

process process
activity process
partnerLink communication channel of process
variables communication message

In Section 3. 1 to 3. 3 , we will define the translation
rules of BPEL4WS structured , concurrent and primitive
activities to the CSP notation.
3. 1 　St ructure d Activitie s
3. 1. 1 　Sequence

The sequenctial structured activity of BPEL4WS can

4131

Wuhan University J ournal of Natural Sciences 　Vol. 11 　No. 5 　2006

be mapped to a CSP process that is defined as : If P and
Q are sequential with the same alphabet , their sequential
composition P; Q is a process which first behaves like P;
but when P terminates successfully , (P; Q) continues by
behaving as Q. If P never terminates successfully , nei2
ther does (P; Q) . The rule of sequence activity transla2
tion is shown in Table 3.

Table 3 　Sequence translation

BPEL4WS notation CSP notation

〈sequence〉
activity1

activity2

activity3

〈/ sequence〉

ACT1 = action1 →SKIP
ACT2 = action2 →SKIP

ACT3 = action3 →SKIP
SEQU ENCE =
(ACT1) ; (ACT2) ; (ACT3)

3. 1. 2 　Switch
The switch2structured activity of BPEL4WS can be

mapped to a CSP process that is defined as : If P and Q

are processes , then
P <| b >| Q (P if b else Q)

is a process that behaves like P if the initial value of b is
true , or like Q if the initial value of b is false. The rule of
switch activity translation is shown in Table 4.

Table 4 　Switch translation

BPEL4WS Notation CSP notation

〈switch〉
〈case condition
　= bool2expr〉

activity1

〈/ case〉
〈otherwise〉
activity2

〈/ otherwise〉
〈/ switch〉

CASE = ACT1

ACT1 = action1 →SKIP
OTHERWISE = ACT2

ACT2 = action2 →SKIP
　
SWITCH =
(CASE) <| bool2expr >|
(OTHERWISE)

　

3. 1. 3 　While
The while2structured activity of BPEL4WS can be

mapped to a CSP process that is defined as : If iterative
process P is performed until the given Boolean condition b
no longer holds true , then iterative process P will be
written as

b·Q
　　The rule of while2activity translation is shown in
Table 5.
3. 1. 4 　Pick

The structured pick activity of BPEL4WS awaits the
occurrence of one of a set of events and then performs the

Table 5 　While translation

BPEL4WS notation CSP notation

〈while
condition = bool2expr〉
activity
〈/ while〉

ACT = action →SKIP
　
WHIL E =
bool2expr ·(ACT)

activity associated with the event that occurred. Each
pick activity must include at least one onMessage event
that is represented by〈onMessage〉constructor.

〈onMessage
partnerLink =“ncname”port Type =“qname”
operation =“ncname”variable =“ncname”〉
activity

〈/ onMessage〉
The semantics of the onMessage event is identical to

receive activity. A receiving activity can be translated to
the input event defined in CSP. The partnerLink attrib2
ute of onMessage constructor can be mapped to an input
channel of CSP. Similarly , the variable attribute of on2
Message constructor can be translated to the message of
input event .

The structured pick activity of BPEL4WS can be
mapped to a CSP process that is defined as : if x and y are
distinct events , then

(x → P | y →Q)

describes a process which initially engages in either events
x or y. Since x and y are different events , the choice be2
tween P and Q is determined by the first event that actu2
ally occurs. The rule of pick activity translation is shown
in Table 6.

Table 6 　Pick translation

BPEL4WS notation CSP notation

〈pick〉
〈onMessage

partnerLink =“plname1”
variable =“vname1”〉
activity1

〈/ onMessage〉
〈onMessage
partnerLink =“plname2”
variable =“vname2”〉
activity2

〈/ onMessage〉
〈/ pick〉

ONMESSA GE1 =
plname1 ?vname1 →ACT1

ACT1 = action1 →SKIP
ONMESSA GE2 =

plname2 ?vname2 →ACT2

ACT2 = action2 →SKIP
　
PICK=
(ONMESSA GE1 |
ONMESSA GE2)

3. 2 　Concurre nt Activit y
The concurrent flow activity of BPEL4WS can be

mapped to a CSP process that is defined as : If P and Q

5131

GU Xiwu et al :A Formal Model f or BPEL4WS Description ⋯

are processes with the same alphabet , then the notation
P‖Q

denotes a process which is composed of processes P and
Q running concurrently. The rule of flow activity transla2
tion is shown in Table 7.

Table 7 　Flow translation

BPEL4WS Notation CSP Notation

〈flow〉
activity1

activity2

〈 / flow〉

ACT1 = action1 →SKIP
ACT2 = action2 →SKIP
FLOW = (ACT1) | | (ACT2)

3. 3 　Primitive Activit y
3. 3. 1 　Invoke , receive and reply

The primitive invoke activity allows the business
process to invoke a request2response operation on a port2
Type offered by a partner. It can be regarded as the in2
put/ output event between business process issuing the
invocation and corresponding partner’s process. The par2
tnerLink attribute can be translated to a communication
channel , whist inputVariable and outputVariable can be
mapped to the message of input/ output event. Similarly ,
the primitive receiving activity is mapped to an input
event of CSP and the primitive replying activity corre2
sponds to an output event in the same way. The rules of
invoke , receive and reply activity translation are shown in
Table 8.

Table 8 　Invoke , receive and reply translation

BPEL4WS notation CSP notation

〈invoke
name =“INVO KE”
partnerLink =“plname”
inputVariable =“x”
outputVariable =“y”⋯
/ 〉

INVO KE =
plname !x →plname ?y →SKIP

〈receive
name =“RECEIVE”
partnerLink =“plname”
variable =“x”⋯/ 〉

RECEIVE =
plname ?x →SKIP

〈reply
name =“REPL Y”
partnerLink =“plname”
variable =“y”⋯/ 〉

REPL Y =
plname !y →SKIP

3. 3. 2 　Assign
The primitive assign activity of BPEL4WS can be

mapped to a CSP process that is defined as : If x is a pro2
gram variable , and e is a expression , then

x ∶= e;SKIP
denotes the value of x is defined by value of expression e.
The rule of assign activity translation is shown in
Table 9.

Table 9 　Assign translation

BPEL4WS notation CSP notation

〈assign〉
〈copy〉
〈from variable =“y1”〉
〈to variable =“x1”〉
〈/ copy〉
〈copy〉
〈from variable =“y2”〉
〈to variable =“x2”〉
〈/ copy〉
〈/ assign〉

COPY1 =
(TO1 ∶= FROM1 ;SKIP)

TO1 = x1 FROM1 = y1

　
COPY2 =
(TO2 ∶= FROM2 ;SKIP)

TO2 = x2 FROM2 = y2

　
ASSIGN =
(COPY1) ; (COPY2)

3. 3. 3 　Terminate and empty
The semantic of primitive terminate activity is to im2

mediately terminate the behavior of a business process
within which the terminate activity is performed. It can
be translated to STOP that is defined in CSP as : The
process that never actually engages in any of the events is
called STOP. Similarly , the primitive empty activity cor2
responds to SKIP which is defined in CSP as a process
that does nothing but terminate successfully.

4 　Tra nslation Algorit hm a nd Model
Verification

Section 3 defines the translation of BPEL4WS struc2
tured , concurrent and primitive activities to the corre2
sponding CSP notation. In this section we will introduce
the algorithm for translating a BPEL4WS document that
describes a composite Web service to a CSP model. The
whole idea about the algorithm is : The algorithm parses
the BPEL4WS document from the root node process and
its child nodes. For every node n that stands for a struc2
tured or concurrent activity , the algorithm imports a new
intermediate symbol as the process name mapping from
the node n. An intermediate process name of node n will
be defined by next hierarchy process names that stand for
the child nodes of node n until the parsing reaches a
primitive node. When the parsing of whole BPEL4WS
document is finished , all intermediate symbols will be
substituted recursively and the composite Web service

6131

Wuhan University J ournal of Natural Sciences 　Vol. 11 　No. 5 　2006

will be only expressed by atomic process mapping from
primitive activities.

In order to avoid conflict of the intermediate sym2
bol , we define the naming rules of intermediate symbol as
follows :

Rule 1 　Intermediate symbol is named by corre2
sponding node name.

Rule 2 　Intermediate symbol is indexed.
Rule 3 　The index of intermediate symbol of node

N is of two dimensions. Hierarchy of node N in the node
tree determines the first dimension and the second dimen2
sion is determined by whether there are any nodes whose
tag name and hierarchy are equal to that of node N .

Rule 4 　All intermediate symbols at right side of
equation are put in parentheses.

To illustrate the naming rules , an example node tree
is shown in Fig. 2.

Fig. 2 　Example node illustrating naming rules

In the example node tree , the hierarchy of node
process is at the top , so the algorithm imports an inter2
mediate symbol process00 to denote the corresponding
CSP process of node process. The node flow has two
identical child nodes and the hierarchy of these two nodes
is 2 , so we import two new intermediate symbols se2
quence21 and sequence22 to denote the corresponding CSP
process of them respectively.

With the naming rules of intermediate symbol , the
algorithm can be described as follows :

Step 1 　Locate the root node process.
Import intermediate symbol process00 .
CurrentSymbol = process00 .
CurrentNode = process.
Step 2 　Parse the child node N of process node.
Import intermediate symbol S for child node N .
process00 = (S) .
CurrentSymbol = S.
CurrentNode = N.
Step 3 　Parse the child nodes of CurrentNode.
If CurrentNode has child nodes then

Set N = 0
For each child node N i

　　Import new intermediate symbol S i .
　　N = N + 1.
End For
Define CurrentSymbol using next hierarchy interme2

diate symbol S i (i = 1 , ⋯ , N) according to the map2
ping rules described in Section 3.

For each child node N i

　　if N i has child nodes then
　　　　CurrentSymbol = S i .
　　　　CurrentNode = N i .
　　　　repeat step 3 recursively.
　　End if
End For

End If
Step 4 　For each node N i that has no child node
　　　　Define the symbol of N i according to
　　　　map rules described in section 3.
　　End For

Step 5 　Substitute all intermediate symbol until the
composite Web service is only expressed by atomic
process mapping from primitive activities.

In order to illustrate the algorithm , we present a
simple example of a BPEL4WS process for handling a
purchase order. The process is composed of nesting
structured activities. The workflow of the process is very
simple : On receiving a purchase order from customer ,
the process initiates two subtasks concurrently : selecting
a shipping and calculating price. When the two subtasks
completes , an invoice is sent to customer. The
BPEL4WS process is defined with BPEL4WS as follows :
〈process name =“purchaseOrderProcess”⋯〉
〈sequence〉
〈receive partnerLink =“purchasing”

variable =“PO”⋯/ 〉
〈flow〉

〈sequence〉
〈assign〉
〈copy〉
〈from variable =“PO”⋯/ 〉
〈to variable =“shippingRequest”⋯/ 〉
〈/ copy〉
〈/ assign〉
〈invoke partnerLink =“shipping”

inputVariable =“shippingRequest”
outputVariable =“shippingInfo”⋯/ 〉

7131

GU Xiwu et al :A Formal Model f or BPEL4WS Description ⋯

〈receive partnerLink =“shipping”
variable =“shippingSchedule”⋯/ 〉

　〈/ sequence〉
　〈sequence〉
〈invoke partnerLink =“invoicing”

InputVariable =“shippingInfo”⋯/ 〉
〈receive partnerLink =“invoicing”

variable =“Invoice”⋯/ 〉
〈/ sequence〉
〈/ flow〉
〈reply partnerLink =“purchasing”

variable =“Invoice”⋯/ 〉
　〈sequence/ 〉

〈/ process〉
We can translate this BPEL4WS document to CSP

with following steps :
Step 1 　process00 = (sequence10)
Step 2 　sequence10 = (receive20) ; (flow20) ; (re2

ply20)
Step 3 　receive20 = purchasing ?PO →SKIP ;

flow20 = (sequence31) | | (sequence32)
reply20 = purchasing !Invoice →SKIP

Step 4 　sequence31 =
(assign40) ; (invoke41) ; (receive41) ;
sequence32 = (invoke42) ; (reveive42)

Step 5 　assign40 = shippingRequest : = PO
invoke41 =
shipping !shippingRequest →shipping ?
shippingInfo →SKIP
receive41 =
shipping ?shippingSchedule →SKIP
invoke42 = invoicing !shippingInfo →SKIP
reveive42 = invoicing ?Invoice →SKIP

Step 6 　process00 = ((purchasing ?PO →SKIP) ;
(((shippingRequest : = PO) ;
(shipping !shippingRequest →shipping ?
shippingInfo →SKIP) ;
(shipping ?shippingSchedule →SKIP)) | |
((invoicing !shippingInfo →SKIP) ;
(invoicing ?Invoice →SKIP))) ;
(purchasing !Invoice →SKIP))

Once Web service composition has been formally
modeled by CSP , we can utilize its firm mathematical
framework to reduction the behavior of composite Web
service and verify the correctness of composition. System
behavior reduction means that the behaviors of two for2
mally modeled software systems can be reduced according

the reduction laws of formal model. If the reduction re2
sults of two systems are identical , the behaviors of two
systems are equivalent . Model verification can be used to
guarantee the correctness of system such as deadlock
avoidance , concurrency and synchronization.

As a strong and mature formal model , CSP has va2
rious supporting tools for model checking , model correct2
ness verification and model simulation. The emergence of
tools for CSP has had a profound impact on the utility of
the CSP notation.

The CSP model2checking tool FDR (i. e. Failures2Di2
vergence Refinement) developed by Roscoe[11] may be of
particular interest . FDR was the first commercially
available tool for CSP and played a major role in driving the
evolution of CSP from a notation to a concrete language. It
allows the checking of a wide range of correctness condi2
tions , including deadlock and livelock freedom as well as
general safety and liveliness properties. When these condi2
tions are not satisfied , the reasons can be investigated.

ProBE[11] is an another tool offering from Formal
Systems. In contrast to FDR’s automatic checking of
properties , the ProBE tool enables the user to“browse”
a CSP process by following events that lead from one
state of the process to another. It uses a hierarchical list
to display the possible actions and states of a process in
much the same way as a file system viewer shows direc2
tories and files.

CCSP[12] is an execution environment for CSP pro2
grams from the University of Missouri2Rolla , USA , pro2
vides an execution environment for CSP programs. CCSP
consists of two parts , a parser and a run2time system
using Berkeley sockets. The parser takes a CSP program
as input and produces a C program as output . These C
programs are then run as individual processes on a net2
work of UNIX workstations.

J CSP[13] (i. e. CSP for Java) is a complete library for
building complex functionality through layered networks
of communicating processes. It conforms to the CSP
model of communicating systems so that CSP theory ,
tools and practical experience can be brought to bear in
the support of Java multi2threaded applications.

In order to utilize CSP model2checking tool FDR to
verify a CSP model describing a composite Web service ,
an important step is to translate the CSP scripts to ma2
chine2readable dialect of CSP (CSPM) . After a CSPM

script which describing a composite Web service is loaded
by FDR , we can verify the correctness of composite Web

8131

Wuhan University J ournal of Natural Sciences 　Vol. 11 　No. 5 　2006

service model through FDR’s operations such as deadlock
checking , tracing and process debugging. The verifica2
tion results can then be used to correct invalid behaviors
in Web service composition design.

5 　Conclusion

A composite Web service is composed of several
component Web services , which interact and communi2
cate with each other concurrently. A formal model of
Web service composition is needed to guarantee the cor2
rectness of concurrency , synchronization and behavior of
Web service composition. In this paper , we present a
formal model CSP with which the semantic of Web serv2
ice composition can be characterized and describe the
mapping algorithm between BPEL4WS constructors and
CSP notations. Examples for illustrating how composite
Web services can be modeled by CSP are given. The
methods for model checking , model verification and mod2
el simulation are also introduced.

Ref ere nces

[1] 　Andrews T , Curbera F , Dholakia H , et al . Business Process
Execution Language for Web Services Version1. 1[EB/ OL].
[2003205205]. htt p :/ / www2128. ibm. com/ developerworks/

library/ s peci f ication/ ws2bpel/ .

[2] 　Leymann F. Web Services Flow Language (WSFL1. 0) [EB/
OL]. [2005210220]. htt p :/ / www2306. ibm. com/ sof tware/

solutions/ Webservices/ p df / WS FL . p df .

[3] 　Hamadi R , Benatallah B. A Petri Net2based Model for Web
Service Composition [C] / / Database Technologies 2003 ,

Proc of Fourteenth A ust ralasian Database Conf erence
(A DC2003) . Sydney : Australian Computer Society , 2003 :
1912200.

[4] 　Van der Aalst W M P , ter Hofstede A H M. Verification of
Workflow Task Structures : A Petri2Net2Based Approach
[J]. Inf ormation S ystems , 2000 ,25 (1) :43269.

[5] 　RAO Jinghai. Semantic Web Service. Com position via.

L ogic2B ased Program. S ynthesis [D]. N27491 Trondheim :
Department of Computer and Information Science , Norwegian
University of Science and Technology , 2004.

[6] 　Lumpe M. A Pi2Calculus B ased A p proach to Sof tw are

Com position [D]. Switzerland : Instiute of Computer Science
and Applied Mathematics , University of Bern , 1999.

[7] 　Hoare C A R. Communicating Sequential Processes [M].
New Jersey :Prentice2Hall , 2004.

[8] 　Hoare C A R. Communicating Sequential Processes [J].
Communications of the A CM , 1978 ,21 (8) :6662677.

[9] 　Wohed P , van der Aalst W M P , Dumas M , et al . Pattern

B ased A nalysis of B PEL 4WS [R]. Queensland : Queensland
University of Technology ,2004.

[10] Foster H , Uchitel S , Magee J , et al . Model2Based Verifica2
tion of Web Service Compositions[C] / / Proceedings of the

18 th I EEE International Conf erence on A utomated Sof tw are

Engineering. Montreal , Canada : IEEE Computer Society
Press ,2003 :1522161.

[11] Roscoe A W. The Theory and Practice of Concurrency

[M]. New Jersey :Prentice2Hall , 1997.
[12] Lutfiyya H , Mc Millin B , Arrowsmith B , et al . CCS P—A

Formal S ystem f or Dist ributed Program Debugging [R].
Rolla ,New Jersey : University of Missouri , 1994.

[13] Welch P , Austin P. CSP for Java (JCSP) [EB/ OL]. [20052
11205]. htt p :/ / www. cs. kent. ac. uk/ projects/ of a/ jcs p/ ex2
plain. html.

□

9131

