Wuhan Uversity Journal of Natural Sciences

Article 1D :1007- 1202 (2006) 05-1311-09

Vol.11 No.5 2006 1311-1319

A Formal Model for BPEL4WS Description
of Web Service Composition

O GU Xiwu, LU Zhengding'

College of Computer Science and Techrology , Huazhong
Universty of Sdence and Technology , Wuhan 430074,
Hube , China

Abstract : Communicating Sequentid Processes (CSP) isa
kind of process agebra, which is suitable for modding and
verifying Web service composition. This paper describes how
to modd Web service compostion with CSP. A set of rules
for trandating compostion constructor of Budness Process
Execution L anguage for Web Services (BPEL4WS) to CSP
notationsis defined. According to the rulesthat have been de-
fined, the corresponding trandation agorithm is desgned and
illustrated with examples . The methods for model checking,
modd verification and mode dmulation are d <0 introduced.
Key words: communicating sequentia processes; Web
service; Web service compostion; busness process execution
language for Web services

CLC number: TP 311

Received date: 2006-03 15

Foundation item: Supported by the Nationd Naturd Sdence Founr
dation of China(60403027) , the Natura Sdence Foundation of Hubei
Province(2005ABA258) , and the Open Foundation of Sate Key La
boratory of Software Engineering (SKL SE05-07)

Biography: GU Xiwu(1967-) , mde, Ph.D. canddate, research d-
rection: Web service, semantic Web and middeware. Emal : guxw_
wang @sna. com.

1 To whom correspondence should be addressed. E mall :zdlu4409 @

public. wh. hb.cn

Wuhan University Journa of Naturd Sciences Vol.11 No.5 2006

0 Introduction

eb service compostion denotes the Stuation that a cli-

ent’ sor aclient agency’ s request can not be satified
by a angle Web service, but by combining some of available
component Web services. The component Web services might
interact with each other concurrently by communication and
exchanges of messages to carry out the task requested by the
cient. SO Web service compostion will involve in concurren-
cy, synchronization and communication of component Web
service. Obvioudy, aforma modd of Web service compos-
tion is needed to guarantee the correctness of concurrency,
synchronization and behavior of Web service compostion.

In the researching field of Web service compostion, there
are two trends coming together attempt to deal with the prob-
lems mentioned above. Onone sde, the Web service compos-
tion is described in workflow sedfications like Busness
Process Execution Language for Web Services
(BPELAWS ™. The compostion of theflow is still manualy
obtained. Ontheother 9de, the semantic Web community fo-
cuses on reasoning about Web resources with terms defined in
ontology. Although two approaches adopt different technical
mechanism, they al need stitable formal modd for descri-
bing, checking and verifying composte Web service 0 that
correctness of Web service compostion can be guaranteed.

Research papersfounded in thisfield have proposed vari-
ousforma mode s such as Petri-net , P-caculus, linear logic,
etc. Web Services Fow Language (i.e. WSAL)?! | whichisa
net-oriented language originated from workflow language, can
be regarded as Colored Petri-Net (i.e. CPN). Hamadi and
Benatallah™® proposed a Petri-Net based algebra for compos
ing Web services. The formal semantics of the compostion

1311

operatorsis expressed in terms of Petri-Net by providng
a direct mapping from each operator to a Petri-Net con-
gruction. Thus, any service expressed usng the agebra
congructs can be trandated into a Petri-Net representa
tion. Ads and Hofstede!! developed a Petri- Net- based
workflow anayzer to enable the automatic verification of
workflow process gedfied with Petri-Net. Rao Jinghai!®
proposed a olution to automatic semantic Web service
compostion based on linear logic. In the slution, the
Web services and the user’ s requirement are both gedi-
fied by DAML-S ServiceProfile. A trandator is repons-
blefor trandating theminto linear logic formulate. Thus
the description of existing Web service is encoded as line-
ar logc axioms, and the requirement to the composte
service are edfied in the form of alinear logic sequence
to be proven. Lumpe'® developed a formd language for
ftware compostion based on a variant of P-caculus
and defined a Javar based composgtion system.

Hoare’ s ocommunicating sequentia processes
(CSP) " #) is another kind of forma modd for describing
and modding oconcurrent systems whose component
processes interact with each other by communication. In
this paper , we adopt CSP to describe and to model Web
service compostion . We study the BPELAWS gedfica
tion and extract the compostion congructors of
BPEL4WS, then esablish a st of mapping rules for
trandating compostion congtructorsof BPEL4WSto CSP
notations. We have desgned a trandation agorithm for
trandating BPEL4WS document to CSP mode , which
can be used to check and verifying BPEL4WSimplemen-
tation with model verification tools of CSP.

1 Basic Conception of CSP

CSPis a modd language for describing concurrent
and distributed computation. The CSP mode is based on
theidea that severad sequentid processes are running in
pardld to each other. A CSP program is a dtatic set of
explidt processes. Pars of processes communicate syn-
chronoudy by naming each other in input and output
Satements.

1.1 Event and Process

In CSP gedfication, an event is defined as an action
without duration. Eventscan a0 be named as actions or
commands. A processis defined as the set of events that
are relevant. This st iscalled adphabet. The behavior of
aprocessis defined by a set of process names and operar

1312

tors. The following conventions are used in CSP nota
tion:

Words in lower-case letters denote digtinct
events,e.g. a, b, c, d

Words in upper-case letters denote gedfic de-
fined proceses, e.g. P, Q, R

The dphabet of Process Pis denoted asd p.

Let x be an event and let P be an process, x dp,

then

X - P

describes a process that first engagesin the event x and
then behaves exactly like P. Note that - operator d-
way's takes a process on the right and a sngle event on
the left. Thus we can carefully distinguish the concept of
an event from that of a process that engages in events.
Event xiscdled prefix of process P. A process descrip-
tion that begins with a prefix is sad to be guarded.

If xand y are digtinct events, then

(x >Ply-Q
describes a process which initialy engagesin ether events
xor y. Snce xand y are different events, the choice be-
tween Pand Qisdetermined by thefirgt event that actu-
aly occurs.

The CSP gedfication a0 defines two edd
processes named SKIP and STOP. The process that nev-
er actualy engages in any of the eventsis cdled STOP.
SKIPis defined as a process that does nothing but termi-
nate success ully.

1.2 Recursion
In CSP gedification, a process can be defined recur-
Svely to describe repetitive behaviors. For example,
cdock = (tick - clock)
describes a dlock which dwaystick. If F(X) isa guarded
expresson contaning the process name X, then the
process X can be defined recursvely as:
X = F(X).
1.3 Communication

In CSP gedfication, communications between corn-
current processes is regarded as gecid classof an event.
A communication is described by a pair of c¢. vwhere cis
the name of the communication channe and visthe value
of messages that pass.

A process which first outputs von the channd cand
then behaves like Pis defined as

clv - P

The only event in which this processisinitialy pre-

pared to engage is communication event clv.

QU Xiwu et d :A Forma Mode for BPEH.4WS Description

A process which isinitidly to input any vaue x on

the channd c, and then behave like P, is defined as
cX - P

1.4 Concurrency

If Pand Q are processes, then the notation

PI] Q

denotes the process which behaves like the system conr
posed of processes P and Q interacting in synchronizer
tion.
1.5 Sequential Processes

If Pand Qare sequentia processes with the same -
phabet , their sequentia composgtion

P;Q

isaprocess that first behaves like P; but when Ptermi-
nates success ully , (P; Q oontinues by behaving as Q.

A process P which repeats Smilar actionsis denoted
a *P=P, P, P

If xisaprogram variable and eis an expresson and
P aprocess, then

(x =& P
is a process that behaves like P, except that the initid
vaue of xisasdgned by the value of expresson e Initia
valuesof al other variables are unchanged. Assgnment
by itsdf can be given a meaning by
(x =8 =(x =eSKIP
If Pand Q are processes, then
PkbpQ(Pif bdse Q

isaprocess which behaveslike Pif theinitia valueof bis
true, or like Qif theinitid vadue of bisfase.

If iterative process P is performed until the gven
Boolean condition b no longer holds true, then iterative
process P will be writtenas b- Q.

2 Modeling Web Service Composition
with CSP

In order to describe a Web service composgtion usng
CSP, ardationship between conceptions of Web services
compostion and CSP is egtablished first. A component
Web service is represented by a CSP process. Interaction
between component Web services such as invoke, re-
quest , regponse can be represented by a CSP communicar
tion event. Let’ sview the example shownin Fg. 1.

FHgure 1 describe a composte Web service that can
hand e a purchase order from client agency. The compos
ite service is composed of three component services: Or-
der Service, Ship Service, and Invoice Service. On re-

Wuhan University Journa of Naturd Sciences Vol.11 No.5 2006

! channel:shipping ship

msg:PO | _service

msg:ShipInfo

channel:purohasing [Order

msg:Shipinfo msg:PO | Service
msg:Invoice

Client
agency

msg:Invoice

msg:PO

Invoice
service

channel:invoicing

Fig.1 A composite Web srvice example

ceiving a purchase order from dlient, the Order service
will initiates Ship service and Invoice service concurrently
by sending them the message PO aong communication
channels shipping and invoidng respectively. Ship and
Invoice services will reply message Shiplnfo and Invoice
to Order service dong the same channel ater they have
carried out the shipping schedule and price calculation re-
ectively. At last Order service will send Shipinfo and
Invoice back to client. Fg. 1 shows that: The Order
Service communicates with Client Agency, Ship Service
and Invoice Service dong channg purchasng, shipping
and invoiang regectively and the messages exchanged
with each other are PO, Shiplnfo and Invoice.

S we can model Order Service asa CSP process Or-
der ServiceProcess which is defined as:

Order ServiceProcess = purchasng PO - (shipping!
PO -SKIP| | invoicing PO -SKIP) ; (shipiping Shipinfo
-SKIP | invoicing Anvoice -SKIP) ; (purchasing !Invoice
- SKIF| | purchad ng !ShipInfo »SKIP).

Smilarly, the Ship service and Invoice service are
modeled as:

Ship ServiceProcess = shipping PO —shipping! Ship-
Info - SKIP;

InvoiceServiceProcess = inwoidng PO —invoicng!
Invoice — SKIP;

Fndly, the composte process can be modeled as:

CompositeProcess = Order ServiceProcess| | ShipSer-
viceProcesy | InvoiceServiceProces.

3 Mapping BPE.4WS to CSP

BPEL4WS is an emerging standard for spedfying
and executing workflow spedfications for Web <ervice
compostion invocation. BPEL4WS provides a language
for theformal spedfication of bugness processes and bus-
iness interaction protocols. BPEL4AWS gedfication de-
finesfollowing congructors to describe the behavior of a

1313

composte bugness process, as shown in Table 1.

Qven a busness process is described by BPE.4WS
edification, however , it will a0 rase the question of
whether this compostion is verified, is there any poten-
tid deadock and whether the correctness of concurrency
and synchronization can be guaranteed. Technicaly
BPH.4WSlacksin verification of composte Web service.
In order to systematically evaluate the capahilities and
limitations of BPEL4WS, P. Wohed et al'®’ proposed a
framework based on existing workflow and communicer
tion patterns that could be used for an in-depth andys's
of BPELAWS. H. Foger et al'® trandated BPEL4WS
program into FSP process and verified FSP process by

L TSA tool. if BPEL4ES implementation can be modeled
by CSP, we can verify compodte Web service by means
of CSP s modd verification tools.

To ease the modding of the BPELAWS agang
CSP, the BPELAWS activitieslisted in Table 1 are divid-
ed into four groups: structure,concurrent ,primitive and
compensation. Structure represents sructured activities
executing on the traditiona structured programming de-
dgn prindples of sequence, sdection and iteration. Con-
current eafies the parald activities. Primitive repre-
sents those activities that are atomic. Compensation ac-
tivities provide the mechanism for dedling with execution
error and execution roll back.

Table 1 BPH_4WS Congructars

Process Top leve abstract process

Partners Web services the process interact with
Variables Data used by the process(message data)
CorreationSats Dependencies between messages

Invoke Invoke an operation on a partner
Receive Receive invocation from a partner
Reply Send a reply message in partner invocation
Lo L Assgn Data assgnment between containers
Primitive activities . .
Throw Detect processng error and throws exception
Wait Execution stopsfor a given time period
Empty Do nothing
Terminate Terminate a Service Instance
Compensation activities Fault Handlers Ded s with faulty conditions
v CompensationHanler Undo an action
Sequence Execute activities sequentialy
While Iterate execution of activities until conditions violated
o] Test conditional branch and execute corregponding activi-
Structured activities Switch . P 9
ties
Wait the occurrence of oneof a set of events and then per-
Fick - .)
forms the activity assodiated with the event that occurred
Concurrent activities How Execute activitiesin pardld

In order to trandate BPH.4WS notation to CSP no-
tation, a relationship between the oconceptions of
BPH.4WS and onesin the CSP mugt be established too.
A busness process described by BPEL4WS correponds
to a CSP’ s process. Various activities that describe the
behavior of a busness process can d be mapped to
processes of CSP. A partnerLink that characterizes the
interaction between a pair of Web Service can be tranda
ted to an inter-process communication channel of CSP.
Variables stand for message of communication. Table 2
liss the conceptions mapping between BPEL4WS and
CSP.

1314

Table 2 Conceptions mapping between BPE_4WSand CSP
Conceptions of BPEHL4WS Conceptions of CSP

process process
activity process
partnerLink communication channel of process

varjables == communicationmessage

In Section 3.1 to 3.3, we will ddfine the trandation
rules of BPEL4AWS gructured, concurrent and primitive
activities to the CSP notation.

3.1 Structured Activities
3.1.1 Sequence
The sequenctid structured activity of BPEL4WS can

QU Xiwu et d :A Forma Mode for BPEH.4WS Description

be mapped to a CSP process that is defined as: If P and
Qare sequentiad with the same alphabet , their sequentia
compogtion P; Qisaprocess whichfirs behaveslike P;
but when P terminates succesfully, (P; Q continues by
behaving as Q. If P never terminates successully, ne-
ther does (P; Q). The rule of sequence activity trandar
tionis shownin Table 3.

Table 3 Sequence trandation

BPHE.4WS notation CSP notation
sequence ACT; =action;, -SKIP
activity: ACT, =action, -SKIP
activity. ACTs =actions -SKIP
activitys SEQUENCE=
| sequence (ACT1) ; (ACT2) ; (ACTs)
3.1.2 Switch

The switchr structured activity of BPEL4WS can be
mapped to a CSP process that is defined as: If Pand Q
are processes, then

PkbpQ(Pif bdse Q
isaprocess that behaves like Pif theinitia value of bis
true, or like Qif theinitid valueof bisfdse. The ruleof
switch activity trandation is shown in Table 4.

Table 4 Switch trandation

BPH_4WS Notation CSP notation
switch CASE=ACT:
case condition ACT: =actiomw -SKIP
= bool-expr OTHERWISE=ACT:
activity: ACT; =action, -SKIP
[case
otherwise SWITCH =
activity: (CA SB) |< bool-expr|>
/ otherwise (OTHERWISE)
/ switch
3.1.3 While

The while-structured activity of BPEL4WS can be
mapped to a CSP process that is defined as: If iterative
process Pisperformed until the given Boolean condtion b
no longer holds true, then iterative process P will be
written as

b- Q

The rule of while-activity trandation is shown in
Table 5.

3.1.4 PHck

The structured pick activity of BPEL4AWS awats the
occurrence of one of a st of eventsand then performs the

Wuhan University Journa of Naturd Sciences Vol.11 No.5 2006

Table 5 While trandation

BPH_4WS notation CSP rotation
while ACT =action -SKIP
condtion = bool-expr
activity WHILE=
/ while bool-expr - (ACT)

activity asodated with the event that occurred. Each
pick activity must include at least one onMessage event
that is represented by onMessage congtructor.
onMessage
partnerLink = ncname” port Type = gname”’
operation=" ncname” variable= ncname’
activity

/ onMessage

The semantics of the onMessage event isidentica to
receive activity. A recdving activity can be trandated to
the input event defined in CSP. The partnerLink attrib-
ute of onMessage constructor can be mapped to an input
channel of CSP. Smilarly, the variable attribute of on-
Message constructor can be trandated to the message of
input event.

The structured pick activity of BPEL4WS can be
mapped to a CSP processthat is defined as: if xand y are
dgtinct events, then

(x =Pl y -Q
describes a process which initialy engagesin either events
xor y. Snce xand y are different events, the choice be-
tween Pand Qis determined by thefirgt event that actu
aly occurs. The rule of pick activity trandation is shown
in Table 6.

Table 6 Pick trandation

BPHE_4WS notation CSP rotation
pick ONMESSA GE; =
onMessage plname: ¥namer -ACT:

partnerLink = plname;”
variable=" vname,”

ACT: = actiomy —-SKIP
ONMESSAGE: =

activity: plname: ¥name: -ACT:
/ onMessage ACT: =action, -»SKIP
onMessage
partnerLink = plname;” PICK =
variable = vname,” (ONM ESSA GE: |
activity ONM ESSA GE2)
/ onMessage
/ pick

3.2 Concurrent Activity
The concurrent flow activity of BPEL4WS can be
mapped to a CSP process that is defined as: f Pand Q

1315

are processes with the same aphabet , then the notation
Pl Q

denotes a process which is composed of processes P and

Q running concurrently. The ruleof flow activity tranda

tionis shownin Table 7.

Table 7 Howtrandation

BPH._4WS Notation CSP Notation
flow .
activit ACT: =actiom —-SKIP
iy tyl ACT, = action, ~SKIP
y2 FLOW= (ACT:) || (ACT)
/ flow

3.3 Primitive Activity
3.3.1 Invoke, recave and reply

The primitive invoke activity dlows the bugness
process to invoke a request-regponse operation on a port-
Type offered by a partner. It can be regarded as the in-
put/ output event between budness process issuing the
invocation and corresponding partner’ sprocess. The par-
tnerLink attribute can be trandated to a communication
channd , whist inputVariable and outputVariable can be
mapped to the message of input/ output event. Smilarly,
the primitive recaving activity is mapped to an input
event of CSP and the primitive replying activity corre-
goonds to an output event in the same way. The rules of
invoke, receive and reply activity trandation are shownin
Table 8.

Table 8 Invoke, receive and reply trandation
BPH.4WS rotation CSP notation
invoke
name = INVOKE’
partnerLink = plname’ INVOKE =

inputVariable= x’
outputVariable=' y"
/

plname Ix —plname % -SKIP

receve

name =“ RECEIVE’
partnerLink = plname’
variable= x' /

RECEIVE=
plname x —SKIP

reply

name =“ RERLY’
partnerLink = plname’
variable= y* [/

RERLY =
plnamely —.SKIP

3.3.2 As3gn
The primitive assgn activity of BPEL4WS can be

1316

mapped to a CSP processthat is defined as: If xisapro-
gram variable, and eis a expresson, then

x = g SKIP
denotesthe value of xis defined by value of expresson e
The rule of assgn activity trandation is shown in
Table 9.

Table 9 Assign trandation

BPH_4WS notation CSP motation
assign COPY: =
copy (TO. = FROM; ;SKIP)

from variable= y.”
to variable=" x.”

[copy COPY: =

oopy (TO. = FROM; ;SKIP)
from variable=" y»" TO: = x2 FROM:2 = y»
to variable=" x.”

/ copy
/asdgn

TOi = x FROMi = yi

ASSICGN =
(COPY1) ; (COPY>)

3.3.3 Terminate and empty

The semantic of primitive terminate activity isto im-
mediately terminate the behavior of a busness process
within which the terminate activity is performed. It can
be trandated to STOP that is defined in CSP as: The
process that never actudly engagesin any of the eventsis
cdled STOP. Smilarly, the primitive empty activity cor-
regponds to SKIP which is defined in CSP as a process
that does nothing but terminate succesg ully.

4 Translation Algorithm and Model
Verification

Section 3 defines the trandation of BPEL4WS struc
tured, concurrent and primitive activities to the corre-
gonding CSP notation. In this section we will introduce
the agorithm for trandating a BPEL4WS document that
describes a composte Web service to a CSP modd. The
whole idea about the agorithmis: The agorithm parses
the BPEL4WS document from the root node process and
its child nodes. For every node nthat standsfor a sruc
tured or concurrent activity , the algorithm imports a new
intermediate symbol as the process name mapping from
the node n. An intermediate process name of node n will
be defined by next hierarchy process names that stand for
the child nodes of node n until the parsng reaches a
primitive node. When the parsng of whole BPEL4WS
document is finished, al intermediate symbols will be
substituted recursvely and the composte Web service

QU Xiwu et d :A Forma Mode for BPEH.4WS Description

will be only expressed by atomic process mapping from
primitive activities.

In order to avoid corflict of the intermediate sym-
bol , we define the naming rulesof intermedate symbol as
follows:

Rue 1 Intermediate symbol is named by corre-
gonding node name.
Rue2 Intermediate symbol isindexed.

Rue 3 The index of intermediate symbol of node
N isof two dmensons. Hierarchy of node N in the node
tree determines thefirst dimengon and the second dimen-
gon is determined by whether there are any nodes whose
tag name and hierarchy are equa to that of node N.

Rue 4 All intermediate symbols at right sde of
equation are put in parentheses.

To illugtrate the naming rules, an example node tree
isshownin Hg. 2.

-...yprocesson
flow |—-flow,,
----» sequence,,
—~--> sequence,,

Fig.2 Example node illugrating naming rules

In the example node tree, the hierarchy of node
processis at the top, 0 the agorithm imports an inter-
mediate symbol processo to denote the correspondng
CSP process of node process. The node flow has two
identica child nodes and the hierarchy of these two nodes
is2, 9 we import two new intermedate symbols se-
quencez1 and sequencez to denote the corregponding CSP
process of them regpectively.

With the naming rules of intermediate symhol , the
agorithm can be described asfollows:

Sep 1 Locate the root node process.

Import intermediate symbol processw .

CurrentSymhol = processw .

CurrentNode = process.

Sep 2 Parse the child node N of process node.

Import intermediate symbol Sfor child node N.

processw = (9.

CurrentSymhol = S.

CurrentNode = N.

Sep 3 Parse the child nodes of CurrentNode.

If CurrentNode has child nodes then

Wuhan University Journa of Naturd Sciences Vol.11 No.5 2006

S N=0

For each child node Ni
Import new intermediate symbol S.
N=N+1

End For

Define CurrentSymbol usng next hierarchy interme-
date symbol Si(i = 1, , N) acoording to the map-
ping rules described in Section 3.

For each child node N:;

if Ni has child nodes then
CurrentSymbol = S.
CurrentNode = N;.
repeat step 3 recursvely.
End if

End For
End If

Sep 4 For each node Ni that has no child node

Define the symbol of N; acoording to
map rules described in section 3.
End For

Sep 5 Subgitute al intermediate symbol until the
composte Web service is only expressed by atomic
process mapping from primitive activities.

In order to illugtrate the agorithm, we present a
dmple example of a BPEL4WS process for handing a
purchase order. The process is composed of nesting
gructured activities. The workflow of the processis very
dmple: On recdving a purchase order from customer ,
the process initiates two subtasks concurrently : sdlecting
a shipping and caculating price. When the two subtasks
completes, an invoice is sent to cusomer. The
BPE.4WS processis defined with BPEL4WS asfollows:

process name = purchaseOrder Process’
equence
recave partnerLink = purchagng’
variable= PO* /
flow
sequence
assgn
copy
from variable=" PO" /
to variable =" shippingRequest” /
I copy
[assgn
invoke partnerLink = shipping”
inputVariable = shippingRequest”
outputVariable=" shippinglnfo” /

1317

recaive partnerLink = shipping’
variable=" shippingSchedule” /
| sequence
sequence

invoke partnerLink = invoidng’

InputVariable=" shippinglrfo” /

recave partnerLink = invoicdng’

variable= Invoicg’ /

| sequence

/flow

reply partnerLink = purchagng’

variable=" Invoice’ /

sequence/
| process

We can trandate this BPEL4WS document to CSP
with following steps:

Sep 1 processo = (Sequencen)

Sep 2 sequencenn = (recdvex) ; (flowx) ; (re-
ply20)

Sep 3 recavex = purchaing PO -SKIP;
flowzo = (sequences) || (sequencesz)
replyo = purchasng !Invoice -SKIP
equences: =
(asdgnuo) ; (invokes) ; (recdves) ;
sequencesz = (invokes) ; (reveive:)
asigno = shippingRequest : = PO
invoken =
shipping !shippingRequest —shipping ?
shippinglnfo -SKIP
recdvey =
shipping ZhippingSchedule -SKIP
invokesz = invoidng !shippinglnfo —SKIP
reveves = invoidng Anvoice -SKIP
processio = ((purchasng PO -SKIP) ;
(((shippingRequest : =PO) ;

(shipping !'shippingRequest —shipping ?
shippinginfo -SKIP) ;

(shipping hippingSchedule -SKIP)) | |
((invoiang !shippinglnfo »SKIP) ;
(invoicing Anvoice -~SKIP))) ;
(purchasing !Invoice »SKIP))

Once Web service compostion has been formaly
modeled by CSP, we can utilize its firm mathematica
framework to reduction the behavior of composte Web
service and verify the correctness of composgtion. System
behavior reduction means that the behaviors of two for-
mally modeled oftware systems can be reduced according

1318

Sep 4

Sep 5

Sep 6

the reduction laws of forma modd. If the reduction re-
sultsof two systems are identical , the behaviors of two
systems are equivalent. Modd verification can be used to
guarantee the correctness of sysem such as deadock
avoidance, concurrency and synchronization.

Asa gtrong and mature forma model , CSP has va
rious supporting tool sfor mode checking, model correct-
ness verification and model Smulation. The emergence of
toolsfor CSP has had a profound impact on the utility of
the CSP notation.

The CSP mode-checking tool FDR (i.e. FailuresDi-
vergence Refinement) developed by Rosooe!™ may be of
particuar interes. FDR was the firg commerddly
avalable tool for CSP and played a mgor rolein driving the
evol ution of CSPfrom a notation to a concrete language. It
dlows the checking of a wide range of correctness cond-
tions, indudng deadock and livelock freedom as wel as
generd ety and liveliness properties. When these cond-
tions are not satidied, the reasons can be invedtigated.

ProBE!™! is an another tool offering from Formd
Sysems. In contrast to FDR’ s automatic checking of
properties, the ProBE tool enables the user to* browse”
a CSP process by following events that lead from one
date of the process to another. It uses a hierarchica list
to digplay the posshle actions and states of a process in
much the same way as afile system viewer shows direc
tories and files.

CCSP*! is an execution environment for CSP pro-
gramsfrom the Universty of Missouri-Rolla, USA , pro-
vides an execution environment for CSP programs. CCSP
oongsts of two parts, a parser and a rurrtime system
usng Berkeley sockets. The parser takes a CSP program
asinput and produces a C program as output. These C
programs are then run as individual processes on a net-
work of UNIX workstations.

JCSP! (i.e. CSPforJava) isacomplete library for
building complex functiondity through layered networks
of communicating processes. It conforms to the CSP
mode of communicating syssems < that CSP theory,
tools and practica experience can be brought to bear in
the support of Java multi-threaded goplications.

In order to utilize CSP mode-checking tool FDR to
verify a CSP modd describing a composte Web service,
an important step is to trandate the CSP scripts to mar
chine-readable dialect of CSP (CSPu). After a CSPu
sript which describing a composte Web serviceis loaded
by FDR, we can verify the correctness of composte Web

QU Xiwu et d :A Forma Mode for BPEH.4WS Description

service model through FDR' soperations such as deadlock
checking, tradng and process debugging. The verificar
tion results can then be used to correct invaid behaviors
in Web service compostion desgn.

5 Conclusion

A oompodte Web service is composed of severa
component Web services, which interact and communi-
cate with each other concurrently. A forma modd of
Web service compostion is needed to guarantee the cor-
rectness of concurrency , synchronization and behavior of
Web service compodtion. In this paper, we present a
forma modd CSP with which the semantic of Web serv-
ice compogtion can be characterized and describe the
mapping agorithm between BPEL4WS constructors and
CSP notations. Examples for illustrating how composte
Web services can be modeed by CSP are given. The
methods for model checking, mode verification and mod-
e gmulation are d o introduced.

Ref erences

[1] Andrews T, Curbera F, Dholakia H , et al. Budness Process
Execution L anguage for Web Services Verdonl. 1[BB/ OL].
[2003-05-05]. http:// www-128. ibm. com/ devel operworks
library/ specif ication/ wsbpel/ .

[2] Leymann F. Web Services How Language (WSA.1.0) [EB/
OL].[200510-20]. http:// www-306. ibm. conY sof tward
sol utions Webservices/ pdf/ WSFL . pdf.

Wuhan University Journa of Naturd Sciences Vol.11 No.5 2006

(3]

[4]

(3]

(6]

(7]
(8]
(9]

[10]

[11]

[12]

[13]

Hamad R, Benatallah B. A Petri Net-based Modd for Web
Service Compostion [C] // Database Technologies 2003,
Proc of Fourteenth Australasian Database Conf erence
(ADC2003) . Sydney: Austrdian Computer Society, 2003:
191-200.

Van der Adst WM P, ter Hofssede A H M. Verification of
Workflow Task Structures: A Petri-Net-Based Approach
[J]. Information Systems, 2000 ,25(1) :43-69.

RAO Jingha. Semantic Web Service. Composition via.
LogicBased Program. Synthesis [D]. N-7491 Trondheim :
Department of Computer and Information Science, Norwegian
Univerdgty of Sdence and Techrnology , 2004.

Lumpe M. A Pi-Calculus Based Approach to Sof tware
Composition [D]. Switzerland : Instiute of Computer Sdence
and Applied Mathematics, Univergty of Bern, 1999.

Hoare C A R. Communicating Sequential Processes [M].
New Jersey : Prentice Hall , 2004.

Hoare CA R. Communicating Sequential Processes [J].
Communications of the ACM , 1978 ,21(8) :666-677.

Wohed P, van der Ads W M P, Dumas M, et al. Pattern
Based Analysis of BPEL4WS [R]. Queendand: Queendand
Univerdgty of Technology ,2004.

Foster H, Uchitd S, MageeJ, et al. Modd-Based Verificar
tion of Web Service Compostions[C] // Proceedings of the
18th | EEE International Conf erence on Automated Sof tware
Engineering. Montred , Canada: IEEE Computer Socety
Press,2003:152 161.

Rosoe A W. The Theory and Practice of Concurrency
[M]. New Jersey:Prentice Hall , 1997.

Lutfiyya H, Mc Millin B, Arrowsmith B, et al. CCSP—A
Formal System for Distributed Program Debugging [R].
Rolla,New Jersey: Universty of Missouri, 1994.

Welch P, Austin P. CSPfor Java(JCSP) [BB/ OL]. [2005
11-05]. http:// www. cs. kent. ac. uk/ projects of & jcsp/ ex-
plain. html.

O

1319

