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Abstract—Today, P2P system is one of the largest Internet
bandwidth consumers. In order to relieve the burden on Internet
backbone and improve the user access experience, efficient
caching strategies should be applied. However, due to its au-
tonomous nature, a fully distributed caching scheme is very
difficult to design and implement. Most current P2P caching
approaches are using Client/Server architecture by deploying
dedicated proxy servers on the edge of networks. Such archi-
tecture is expensive. It also incurs single point of failure and hot
spot problems. Furthermore, it violates P2P principle and failed
to utilize vast available resources on individual peers.

In this paper, we investigate the techniques for -efficient
distributed P2P caching. We propose novel placement and re-
placement algorithms to make caching decisions. For each object,
an adequate number of copies are generated and disseminated
on topologically distant locations. Combined with the underlying
hierarchical query infrastructure, our strategies relieve the over-
caching problems for popular objects, and provide more cache
space for other objects. This resolution greatly reduces WAN
traffic for P2P applications. We conduct simulation experiments
to compare our approaches with several common caching strate-
gies. The results show that our algorithms can achieve higher
cache hit rates and superior load balance property.

I. INTRODUCTION

For distributed applications, caching is an effective mechanism to
reduce the amount of data transmission on the Internet backbone and
improve user access experience. For example, in web applications, it
plays a critical role for efficient web services and has been widely
used in organizations (universities, government agencies, corporations
and ISPs). The most popular mechanism used in web caching is
dedicated servers. In this approach, organizations deploy dedicated
proxy caches at the edge of networks which are close to the clients. In
case a client requests an object, if such an object has been requested
by another client in the past and has a copy on the proxy, no remote
data transmission will be needed. The client can get the object directly
from the proxy. This mechanism can also couple with server-side
and client-side caching to further improve the performance. There
are substantial literatures on web caching techniques [1] [2] [3] have
been published.

With the increasing popularity of P2P file sharing applications,
research and industry communities have proposed various solutions
to adopt web caching techniques on P2P file sharing systems [4] [5].
Most of them use the same approach by deploying dedicated cache
servers on the edges of ISP or network boundaries. All incoming and
outgoing P2P data packages are intercepted. In case a new request
for a cached object comes, the data can be retrieved directly from
the cache server instead of the original peer.

*Corresponding author.

However, such benefits come with costs. First, it results in high
investment cost, since each ISP has to buy and install expensive
dedicated servers. Second, it causes a hotspot and single point of
failure problem since all P2P traffic has to go through the proxy.
If a system failure occurs, no peer can receive the service. It also
results in slow response time if large number of requests come
simultaneously. Third, available cache space on the proxy is limited.
The objects shared in P2P applications are typically audio and video
files ranging from several megabytes to hundreds of megabytes. These
objects are much larger than conventional web objects. A proxy
server can not hold too many files and the caching benefit can be
obtained with a centralized proxy server is dubious. Apparently, such
a caching structure violates the principle of P2P networks by using
Client/Server model. The scalability/availability is questionable. It is
easy to control and manage P2P accesses with a dedicated proxy
server, but it fails to utilize vast available storage space on individual
peers to achieve satisfactory performance.

Furthermore, P2P workloads have several characteristics which
distinguish from web applications. In web applications, file accesses
follow Zip-f distribution [6] which represents extreme high access
frequencies for the most popular files. Thus, most caching algorithms
proposed for centralized proxy servers are popularity based approach.
The more popular the object, the higher the number of copies exist in
the system. moderate and less popular objects are not given enough
consideration. Even if they are cached somewhere, these objects have
higher chances to be evicted. Such an approach is not adequate for
P2P workload. In P2P file sharing applications, user access behaviour
follows Mandelbrot-Zipf distribution [7] which has a flatter header.
Thus, the most popular objects do not have as high access frequencies
as in web applications. Another difference is the relatively bigger
sizes of objects in P2P systems. Apparently, applying web caching
techniques directly onto P2P file sharing applications can not yield a
satisfactory performance.

We conduct a comprehensive study on distributed caching strate-
gies to be deployed in P2P systems. Assume in these systems, each
peer contributes its partial storage space to cache objects. In case
a peer Pl issues a query for an object, and the query message
passes through another peer P2, and P2 happens to have the copy
of that object, a cache hit occurs. Then the object will be served
from P2 to P1 directly. In this paper, we propose a hierarchical
caching infrastructure and investigate various cache placement and
replacement algorithms including probability-based and greedy based
algorithms. We observe that most well-known caching strategies
allocate too much resources for the most popular objects, such as
Least Recently Used (LRU), Least Frequently Used (LFU), and etc.
These traditional cache replacement algorithms do not work very
well. A popular file could have a large number of cached copies
and not all of them will be used for future queries. We design some
experiments to compare LFU, LRU and PMRU (Probability-based
Most Recently Used, proposed in this paper). we found that the
top 5% most popular files occupy 49%, 47%, 29% of the cache



space in LFU, LRU, PMRU respectively. However, the cache hit
rates for these files are very similar: 27%, 26%, 26%. We call such
a scenario the over-caching problem. The cache space occupied by
these useless copies also decreases chances for other files to be
cached, and reduces the effectiveness of the cache space. If applying
traditional cache algorithms directly on P2P traffic, it results in
an over-caching problem for the most popular objects. For other
objects, especially moderate popular objects, the current web caching
algorithms can only create limited number of copies. In addition,
those copies are easily to be evicted in case of a cache full. It greatly
reduces caching effectiveness for P2P workload since the access
frequency difference in P2P workload is much smaller compare
to web workload. To remedy this deficiency, in our design, we
compromise and balance the resources allocated for objects with
different popularity. We also carefully choose the locations of cached
copies for each object by placing them in topologically distant sub-
networks using a hierarchical infrastructure. Our simulation results
show that by taking all these factors into consideration, our strategies
achieve great cache performance improvement over common caching
algorithms.

The rest of the paper is organized as follows. In Section II, we
present our the underlying routing infrastructure, caching placement
and replacement algorithms. In Section III, we discuss and analyze
the results obtained from the experiments. Related works are pre-
sented in Section IV. Finally, in Section V, we conclude the paper.

II. CACHING ALGORITHMS

We aim to design efficient caching algorithms for structured P2P
systems. The caching placement and replacement algorithms to be
used are highly dependent on the underlying routing algorithms.
Most structured systems use Distributed Hash Tables (DHTs). In
this section, we describe the underlying routing infrastructure used
in our design. We also address cache placement strategy and cache
replacement strategy, which are two important aspects of caching
algorithms.

A. Underlying Routing Infrastructure

We use Hieras as the underlying routing infrasturece in this paper.
Hieras is a multi-layer DHT based P2P routing algorithm. Like other
DHT algorithms, all the peers in Hieras system form a P2P overlay
network on the Internet. However, Hieras contains many other P2P
overlay networks (sub-networks) in different layers inside this global
layer P2P overlay. Each sub-network contains a subset of system
peers. These sub-networks are organized in such a strategy: the lower
the layer of a ring, the smaller the average link latency between two
peers inside it. In Hieras, a routing procedure is first executed in
the lowest layer P2P sub-network which the request originator is
located in, it moves up and eventually reaches the global overlay. In
Hieras, a large portion of the routing hops are taken in lower layer
sub-networks which have relatively smaller network link latencies.
Thus an overall lower routing delay is achieved. Hieras is a routing
algorithm like Chord, it does not provide any caching functionality.
In this paper, we use Hieras as the fundamental infrastructure to
build our own hierarchical caching scheme. We also study the optimal
caching policies to be applied on such a hierarchical architecture.
More details about Hieras can be found in [8].

B. Cache Placement Strategy

Initially, when a new peer joins the overlay, it builds up necessary
DHT data structures to support query and other services. However,
its cache space is empty and has no copies of any file. Next, when
a query is fulfilled, our system has to make the decision that how
many copies of the requested objects should be generated, and which
peers along the routing (query) path should be chosen for caching.
This work is done by the cache placement algorithm. We introduce
two novel algorithms based on Hieras routing. In our algorithms, we
take the object popularity, query distribution, and network topology

Fig. 1.

Instance of searching an object

into consideration for object copy distribution. Our goal is to set
an adequate number of copies for both popular and unpopular
objects, and carefully select a set of peers to store these copies. Our
algorithms avoid over-caching problems for the most popular objects.
Furthermore, the copies of each file are well disseminated on different
parts of the overlay to better serve local requests and reduce global
traffic.

We also take some heuristic algorithms for comparison purpose.
In All Peers (AP) cache placement strategy, the system selects all
peers along the query path and creates a copy of the requested object
on each of them. While, in Interval Peers (IP) strategy, the system
only selects one of every two peers along the query path for object
caching. This algorithm can be extended to select one of every three
peers and so on. However, the principle is the same as IP. Through
theoretical and experimental analysis, we propose two new strategies:
Probability-based Sub-network Peers (PSP) cache placement strategy
and the Last Sub-network Peer (LSP) cache placement strategy to
support our hierarchical infrastructure. In this paper, we use a multi-
layer Hieras routing infrastructure. The maximum number of layers
is six in our experiments.

1) PSP: In PSP placement strategy, each peer in a sub-network
tries to cache the objects locally to support potential queries from
other peers in the same sub-network. In the following discussion, we
will use “object” and “file” interchangeably to represent a file in P2P
networks. In our hierarchical routing, a query is first executed in the
sub-network of the lowest layer which contains the query originator
peer. If a copy of this object is found within the sub-network, a cache
hit happens. Then the query originator can download the object from
this nearby peer. If no target can be found in this sub-network, the
query is forwarded to the sub-network of higher layers until to the
global DHT.

An example of such a query can be seen in Figure 1, and this
example is a 2-layer Hieras network. Peer a initiates a query for
object k (or the object is published at peer k). At the beginning, it
starts searching within the sub-network it belongs to using Hieras
routing. After several hops, the query reaches peer i. Peer i then
forwards the query to the peer in the next hop (ie. peer j) and a
query failure occurs. It means no copy can be found inside the sub-
network. Therefore, peer i moves to the upper layer global DHT and
continue the query process. In each layer, the corresponding routing
data structure is used as described in [8]. Eventually, the query will
be fulfilled at the peer whose peerid is the closest to the fileid. After
the query finishes, we choose only one peer inside the sub-network
for caching. The following strategy is used.

We define the sub-network query path as R=(r1,72,...,7,). As
shown in the example of Figure 1, the query path is (g,4,1). We
remove the source peer from the list, and the external peers of the sub-
network are not included as well. We specify a factor f (i) for each
peer r; in R, and define weight w; for peer r; based on Equation (1).
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According to the peers’ weight, we select a peer and cache the
target on it. The weight is determined by various factors such as
available storage space, network bandwidth, location, and how many



objects are cached on each peer. By adapting different terms, such a
strategy allows us to select the most adequate peer for caching. For
example, we can always avoid the overloaded peers or choose the peer
with the largest free cache space. In our experiments, we set f (i) = 4°
(peer location in query) to generate the weights. This strategy can
ensure the last peer in the query path has more opportunities to cache
the target, and the other peers have chances to cache the object as
well. Thus, the system can obtain both good cache hit ratio and
balanced load.

2) LSP: In PSP, the peer within the sub-network we choose for
file caching is not fixed. It could change from time to time. Such a
strategy has a drawback. For example, if a new query for the same
object is issued by another peer. Depends on its ID, a different query
path is constructed, and some of the peers in the previous query route
might not be in this path. If this object is cached on one of those peers,
we lose the opportunity to serve the object from a local peer within
the sub-network, and it affects the cache effectiveness. To solve this
problem, we propose LSP algorithm. In LSP, we always select the last
hop peer along the query path for caching. In another word, the peer
used to cache a file within the sub-network is determined. Because
of the feature of the DHT routing, inside a sub-network, queries for
the same object will always converge on this last hop peer. Thus, a
high cache hit ratio can be expected. As shown in Figure 1, a copy of
object k will be cached on peer i. However, in LSP, when we make a
cached copy, if the cache space on the last hop peer is full, LSP has
to evict an existing object, even if there’s other peers along the query
path in the sub-network has available cache space. This might affect
the efficiency of LSP, especially when the allocated cache space on
each peer is not big enough.

C. Cache Replacement Strategy

The second algorithm we have to design is the cache replacement
strategy. In our system, when a peer is chosen to cache the current
object, we examine the available cache space first. If it is full, one or
several objects have to be evicted from the current cache to make
room for the coming object. Here, cache replacement algorithms
make the decision which objects should be replaced.

There are many classical cache replacement algorithms, such as
Least Recently Used (LRU), Least Frequently Used (LFU) and Most
Recently Used (MRU). LRU evicts the least recently used object in
the cache. LFU keeps the most frequently used objects. For both
algorithms, the intention is to keep the most popular objects. While
MRU replaces the most frequently accessed object in the cache.
Its incentive is to keep as many distinct objects as possible with
limited space. We also propose our own Greedy-Dual Request (GDR)
cache replacement strategy and Probability-based Most Recently
Used (PMRU) cache replacement algorithms. We compare them with
classical algorithms in our simulations.

1) GDR: LFU keeps those files which are frequently accessed
to increase the cache efficiency. However, once the query popularity
on an object changes, LFU has to take a long time before expelling
the out-dated files out of the cache. It affects the system overall
performance. On the contrary, LRU can adapt to the changes in
file popularity very well. LRU does not only consider the query
frequencies of the objects, but also the recent accesses on each object.
However, these two algorithms allocate way too many resources to
support the most popular objects, the remaining resources are not
enough to support efficient caching for the moderate and less popular
files. To combine the advantages of both LFU and LRU and avoid
their shortcomings, we design our own cache replacement algorithm
for cache re-construction.

Our GDR algorithm is based on the Greedy-Dual algorithm. The
original Greedy-Dual algorithm introduced by Young [9] deals with
the case when pages in a cache (memory) have the same size but have
different costs to fetch them from secondary storage. A good feature
of a greedy algorithm is: in the absence of any reference correlations,
it can compute the utility value u(p) and sort the objects in decreasing
order according to it. Then it tries to keep as many objects as possible

following this order. With the reference correlation, the Greedy-Dual
Size (GDS) algorithm [10], a very effective web caching replacement
algorithm, takes cost/size as u(p), and uses an inflation value L to
age the objects. On retrieval or on a hit, the key of an object H (p) is
set to L + u(p). On each replacement, L is set to be the value H (p)
of the evicted object p.

However, distributed P2P caching has different characteristics. The
workload is well distributed on every peer. Thus, we modify GDS
algorithm to improve the cache efficiency, and propose our own
Greedy-Dual Request (GDR) algorithm. In GDR, we take the request
time of files 7(p) as u(p). To lessen the weight of r(p), the square
root of r(p) is used to replace r(p) as utility value. This strategy
allows GDR put more weights on moderate and less popular files,
and avoid over-caching on the most popular files. Meanwhile, it can
also let us keep the number of copies for the most popular files above
a certain level which is enough to support queries. Such a strategy
used in GDR improves the cache efficiencies for all files with different
popularity. The details of our GDR cache replacement algorithm is
depicted as Algorithm 1.

Algorithm 1 GDR
1. L+ 0
2: for each request for object p do
3 if p is in cache then
4 r(p) + +;
5: H(p) < L+ \/7(p);
6
7
8
9

end if
: end for
. if build cache for object p then
if cache has not space to put p then
10: L + min{H(q)|q is in cache};
11: evict the minimum g;
122 end if
13 r(p)=1;
14 H(p)+ L+1;
15:  insert p into cache;
16: end if

2) PMRU: Although MRU provides good support for the mod-
erate and less popular files, its overall performance is very poor due
to the following reason. MRU always removes copies of the most
popular objects from the cache. Thus, the system might not have
enough cached copies of a popular object. A large percentage of
queries are for this popular object can not be fulfilled with a cached
copy. Clearly, MRU allocates way too much resource for moderate
and less popular files and affect the caching performance for the most
popular files.

We propose PMRU algorithm to relieve this problem in MRU
by using the replacement strategy based on probability for cache
update. PMRU agrees with MRU that it is not necessary to keep too
many copies for the most popular files. However, when making the
replacement decisions, the system should not always evict the copies
of those objects in order to avoid a resource shortage to satisfy the
requests. Thus, PMRU evicts an object based on its popularity in
the reversed order. To further reduce the chance a popular file is
evicted, we take the square root of object popularity to calculate
the replacement probability. By this mechanism, we avoid remove
too many copies of the most popular objects, and still ensure other
objects have more chances to stay in the cache.

In PMRU, let T = (t1,t2,...,tn) be the set of cache objects on
a certain peer, and F' = (f1, f2,..., f») indicates the popularity of
the object 7. We define the replacement probability P; of a file #;
in Equation 2. Let P = (P, Ps, ..., P,) indicate the replacement
probability of T.
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In PMRU, when the system decides to cache a file on a peer, if
the cache is full, it computes the query probability P; for each object
t;. Then PMRU selects one from T for eviction based on P;. The
files with higher P; are more likely to be selected for replacement.
The details of PMRU cache replacement algorithm is described in
Algorithm 2.

Algorithm 2 PMRU
1: for each request for object ¢; do

2. if t; is in cache then

3: fi++;

4:  end if

5: end for

6: if replication for object ¢; then

7. if cache has not space to put ¢; then
8: compute P; for each t;;

9: select one from cache according to P;
10: evict the selected ojbect;

11:  end if

122 fi=1;

13:  insert t; into cache;

14: end if

D. Proactive Clean of Extra Cache

The over-caching problem discussed in Section I will generate a lot
of unnecessary cache for the most popular objects. Even the system
uses the cache algorithms proposed in this paper, this problem still
exists. These cache will take a lot of cache space, which make the
other lower popularity objects to not be cached by P2P systems. In
order to cache more different objects, we design a proactive clean
approach to evict the extra cache. From the previous discussion, we
know that the top 5% most popular files occupy 49% of the cache
space in the system with LFU replacement strategy, however, the
cache hit rates for these files is only 27%. We call rarely visited
cache for most popular files extra cache. However, in a distributed
environment, each node only has the partial information, so to obtain
the object popularity is very difficult. To address this issue, this paper
presents a simple solution: a node initiates a query for its cached
objects, we call this approach proactive probe, and determine whether
the cache for an object is the extra cache or not according to the return
value of proactive probe. The node i’s proactive probe function for
object R proactive Probe(R) is refined in Equation (3).

proactive Probe(R) = hops hit R 3)

If proactiveProbe(R) is lower than a predefined threshold T,
the object R in node i is considered as high popularity object. If
the request times of the object R requestr is below a threshold 7.,
the cache for R is extra cache and R should be evicted from the
cache by node i. In our strategy, each peer performs proactive probe
and clean extra cache to cache more distinct objects, and we call
this strategy proactive clean (PC). In order to effectively improve the
cache efficiency, PC is run periodically. Node i’s PC algorithm is
shown in Algorithm 3.

III. PERFORMANCE EVALUATION

In this section, we present and analyze the simulation results.
We divide our experiments into three major sets. In the first set,
we compare DHT and HDHT. The second set compares the caching

Algorithm 3 PC
1: for each cached object R do
2. if proactive Probe(R) < T, and requestp < T, then

3: evict R out of the cache;
4. end if
5: end for

performance of various placement strategies, including proposed PSP
and LSP strategies, together with IP and AP algorithms. Finally, in the
third set, we evaluate the efficiency of various replacement strategies,
including our GDR and PMRU policies. We also take well-known
algorithms such as LFU and LRU for comparison purpose. Before
the analysis of experimental results, we will introduce performance
metrics.

A. Performance Metrics

We use the following metrics to evaluate and compare the caching
performance of various algorithms.

1) Query Delay: We use two terms for query delay comparison:
query hops and query distance. The query hops is the average number
of query hops to find a requested object. Although the query hops
can be used to represent the query performance somehow, it is not
very accurate. This is because a query Q1 with smaller query hops
may contain some hops between distant peers, while another query
Q2 with larger query hops only contains hops between nearby peers.
This phenomenon may result in a longer query delay in Q1 than Q2.
In our experiments, each peer is assigned to a position in Cartesian
space. We group peers into sub-networks and use them as the second
layer DHT in Hieras. The peers in the same sub-network are much
closer to each other than the peers in different sub-networks. Let
Qp = {p1,p2, ..., pn} be the query path between peer p1 and pn, D;;
as the actual network distance between peer p; and peer p;. We define
the query distance between peer p1 and peer p,, Dp in Equation 4. To
better reflect the actual query delay, in our experiments, we present
query delay results in both query hops and query distance.

Dp =Y {Dylp:;,p; € Qr and j =i+ 1} )

i=1

2) Query Cache Hit Ratio: In order to evaluate the cache
efficiency for query results, we define query cache hit ratio as the
proportion of the queries which result in a cache hit to the total
number of submitted queries. Obviously, the higher the query cache
hit ratio, the better cache utilization an algorithm can achieve.

3) Load Balance: Load balance is an important metric to
measure the effectiveness of the caching algorithm. We define the
number of cache hits on a peer p; as p,;, and we denote the average
number of cache hits on all peers as p,. The variance of the number
of cache hits is used as the load balance performance metrics. It is
calculated as:

n

1
=2 (i =)’ 5)

i=1

Clearly, the smaller the variance, the better load balance an
algorithm can achieve.

4) File Cache Hit Ratio: File cache hit ratio is the most im-
portant metric to evaluate the efficiency of proposed fully distributed
cache. To evaluate its performance, we define the file cache hit ratio
as the proportion of the number of file accesses which are served
with a cached object to the total number of accessed objects. The
larger the cache ratio, the better performance in file caching.

In our experiments, we use above metrics to evaluate our strategies
with various network architecture, cache placement and replacement
algorithms.



TABLE 1
COMPARISON OF DHT AND HDHT NETWORK ARCHITECTURE
Chord Hieras
placement/replacement placement/replacement
metrics IP/LRU [ IP/GDR [ LSP/LRU [ LSP/GDR IP/LRU [ IP/GDR [ LSP/LRU [ LSP/GDR
Avg Query Hops 5.65 531 539 5.12 192 162 454 132
Avg Query Distance 2900 2689 2769 2673 691 636 635 612
Query Cache hit ratio (%) 54.9 61.8 64.1 69.6 43.2 50.7 534 55.4
Load balance 3119 2431 3480 2915 517 504 408 397
File Cache Hit ratio (%) 51.2 529 524 54.3 61.7 65.4 72.0 74.5
B. The effect of Network Architecture "
To measure the caching performance with different network ar- <
chitecture, we perform the following experiments. We use DHT and >60f
HDHT with different placement and replacement strategies. In P2P 3
systems, large files can be divided into a group of files with the same § 40
size. Most P2P applications (P2P file sharing and P2P streaming) are g
using this strategy to distribute data. Therefore, in our experiments, O 20
we set the sizes of each object are the same, and denote it as 1. In this L —
set of experiments, the cache size is set to 15. The network size is 0 0 10000 20000 30000 40000 50,000
10,000, the number of HDHT layer is 3, and the number of objects Object number

in the system is 50,000. The popularity of objects follows a Zipf-
like distribution. This distribution states that a small set of objects
are extremely popular and the rest of the objects have relatively low
popularity. For all experiments with HDHT architecture, PC strategy
is used in which T, is set to 3 and T, = 2. Unless noted, we use the
same settings for all the experiments.

In order to conduct a fair comparison for a conventional DHT
overlay and a hierarchical DHT overlay. We take IP and LSP as cache
placement strategies, LRU and GDR as cache replacement strategies
in the experiments because they show better performance than other
algorithms. The results are shown in Table I. Combining these
strategies can produce four different configurations, together with two
different network architecture, we obtain eight results for each metric.
The first four columns are the results of DHT architecture, and the
next four columns are the results of HDHT.

As we can observe from Table I, HDHT has much better per-
formance in query delay than DHT under all scenarios. In terms
of average number of query hops, the smallest number in HDHT
category is 83.8 % of the smallest number in DHT. While in terms
of average number of query distance, the ratio is only 22.8%. This
is because in HDHT, more than half of query hops are completed in
lower layer sub-networks, which results in a significant reduction on
search distance. Clearly, HDHT shows excellent query performance.

According to the results, we found that DHT has better perfor-
mance in query cache hit ratio. This is because we take IP and LSP
as placement strategy in the experiments. In DHT, because only one
global layer overlay exist, these algorithms make the peers near the
target peer have higher chances to create copies of the requested
objects. Consequently, it results in a higher cache hit ratio on those
peers. However, such an approach can easily lead to load imbalance.

As we can observe, Table I also reveals the load balance per-
formance for different caching strategies. Unlike DHT which could
keep a copy in a distant peer, HDHT tries to disseminate copies of
objects in different sub-networks. Thus, in HDHT, the new coming
requests for the same object is likely to be absorbed by the cache
located in the same sub-network as the query initiator. The load is
well balanced. While in DHT, queries are likely to converge to a
small number of peers who have the copy of the requested objects,
and result in serious load imbalance. As we can see, the average
variance in HDHT is only 15.3% of that in DHT.

Another beneficial consequence of HDHT architecture is that a
peer can always find the closest peer who has the copy of the
requested object. This is because the query in HDHT is conducted in
the lowest layer sub-network first, with high probability, a query will
not move up to the global layer if one or several peers in the same
lower sub-network have cached copy of the object. In case of a cache

Fig. 2. The cache capacity CDFs for DHT and HDHT

hit, the peer who has the copy is in the same sub-network as the query
initiator will provide the download service. They are very close to
each other. Thus, a large percentage of object transmissions happen
inside lower layer sub-networks. As shown in Table I, HDHT has
better performance than DHT on file cache hit ratio in all scenarios,
and the average improvement in HDHT is 130% of that in DHT. This
is because HDHT take PC strategy to cache more distinct objects.
Moreover, the available bandwidth in HDHT is much higher than in
DHT for a file downloading. The query initiator can retrieve the file
much faster in HDHT. Furthermore, it can also reduce the amount of
inter-ISP or global Internet traffic since the peers in the same sub-
network are likely belong to the same ISP as well. It can decrease
the costs ISPs paid for Inter-ISP traffic.

To check the effectiveness of cache size, we draw the Cumulative
Distribution Functions (CDFs) of cache capacity for DHT and HDHT.
The experiments we conducted use LSP and GDR as placement and
replacement algorithms respectively. Figure 2 shows the results. As
we can observe, HDHT has better performance which allows it to
keep more individual objects. Basically, HDHT will generate less
copies for the most popular objects but the number of copies is still
enough to serve the user requests. In addition, those copies are well
distributed in topologically distant locations. Such a strategy gives
the system extra space to keep moderate popular files for better
performance. While in DHT, system generate too many copies of
the most popular files, and the locations of these copies are not
well chosen. It results in load imbalance problem as we observed
in previous experiments, and reduce the effectiveness of a fully
distributed P2P cache.

C. The Performance of Cache Placement Strategies

In these experiments, we compare and evaluate the performance of
various cache placement strategies including AP, IP, PSP and LSP. We
use HDHT as the underlying network architecture, GDR as the cache
replacement strategy (because it achieves the best performance), and
all the other settings are the same as the previous experiments.
Table II shows the results of all the four strategies with five metrics
evaluated.

The metrics Avg Query Hops (AQH) and Avg Query Distance
(AQD) are used to measure the query delay performance. As can be
seen from Table II, all the four cache placement strategies achieve
good performance. LSP is slightly better than other algorithms in



TABLE I
SIMULATION RESULTS FOR CACHE PLACEMENT STRATEGIES

[ metrics [ AP [ TP [ PSP [ LSP |
Avg Query Hops 478 | 4.62 | 435 | 432
Avg Query Distance 672 636 603 612
Query Cache Hit Ratio (%) 44.6 | 50.7 | 534 | 554
Load Balance 611 504 410 397
File Cache Hit Ratio (%) 514 | 654 | 73.8 | 74.5

terms of AQH and PSP has the best performance in terms of AQD.
AP has the worst results for both AQH and AQD. This is because that
AP makes copies of a requested file on all the peers along the query
path. For the most popular objects, such an algorithm will create too
many copies and occupy too much cache space. Many peers who
have a copy of these objects will have no chance to serve requests
generated by other peers because those requests are likely served by
other peers already. Furthermore, this approach leaves too little cache
space available for moderate and less popular objects, and affects the
caching efficiency for them. Another issue in AP is that AP will
generate too much network traffic as well as disk I/Os. The cache
spaces are frequently replaced by new contents, thereby affecting the
overall performance. Compared to AP, the caching frequency of IP
replacement algorithm decreases by a half, and therefore, we observe
better performance. However, it is still much worse compare to PSP
and LSP. Among all the four algorithms, LSP builds cache at the
last forwarding peer of the sub-network and it ensures a good query
efficiency. The probability-based cache placement approach of PSP
can also improve the hit ratio in sub-networks, thus reducing the
query distance.

As shown in Table II, LSP placement strategy has the best
performance in query cache hit ratio, PSP and IP have similar
efficiency, while AP is still the least effective. For load balance, PSP
and LSP show big advantages over AP and IP. The results again
prove that our PSP and LSP algorithms can distribute the copies of
objects more evenly onto different sub-networks. Furthermore, PSP
and LSP only generate adequate number of copies for each file. For
each individual file, the number of copies to be created is not only
related to its popularity, but also related to the network architecture,
such as the number of sub-networks. Such a well balanced object
distribution mechanism results in a much higher file cache hit ratio
in PSP and LSP compare to AP and IP. From this point, we conclude
that choosing an adequate number of copies for each object is critical
in the design of a fully distributed P2P cache.

To evaluate the efficiency of the four placement strategies for
moderate and less popular objects, we also compute CDFs for cache
capacity like we did in previous experiments. In the experiments,
we take HDHT as network architecture and GDR as replacement
strategy. Figure 3 shows the results. We can observe that PSP has
the best performance. PSP uses 48% overall cache space to store top
10,000 popular files, while AP and IP use 61% and 59% space to
cache the same files respectively. This is because the probability-
based placement policy of PSP plays an important role. AP and
IP algorithms allocate too much cache space for the most popular
objects, and there’s little room left for moderate and less popular
objects. In LSP, when choosing the peers used to cache an object, it
is always fixed to the last hop peer. If the cache space is full, we have
no choice but evict an existing object even in case another nearby
peer has available cache space. While in PSP, we have much more
freedom to choose the peer to cache an object. Thus, PSP displays
the best cache capacity performance.

D. The Efficiency of Cache Replacement Strategy

We also perform the experiments to analyze various cache replace-
ment strategies including LFU, LRU, PMRU and GDR. Again, we use
HDHT as the underlying network architecture, and PSP as the cache
placement strategy. All the other settings are the same as previous
experiments. Table III compares four strategies with five metrics.

TABLE III
SIMULATION RESULTS FOR CACHE REPLACEMENT STRATEGIES

[ metrics [[ LFU [ LRU [ PMRU | GDR |
Avg Query Hops 475 | 4.84 4.80 4.33
Avg Query Distance 675 693 694 621
Query Cache Hit Ratio (%) 46.6 44.7 48.7 55.5
Load Balance 460 416 472 396
File Cache Hit Ratio (%) 66.3 | 68.8 89.9 74.3
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Fig. 3. The cache capacity CDFs for different placement strategies

As we can observe, our GDR replacement strategy has the best
performance in terms of query delay. For the other three algorithms,
LFU represents the best performance. This is because our queries are
generated according to object popularity. Once the query popularity
changes, LFU results in a worse performance which will be discussed
in the following experiments. In terms of query cache hit ratio, GDR
has the best result and PMRU has the worst. We believe the reason
behind this fact is that PMRU removes popular files in case of a
cache full problem occurs. It affects the cache hit ratio, especially for
queries of popular objects. Fortunately, this difference among PMRU,
LFU and LRU is not great. The rationale behind PMRU is to avoid
the excessive number of copies for the most popular objects. On the
other hand, because PMRU does not provide too much resources for
these files, it alway has enough cache space for moderate and less
popular objects, which results in higher overall file cache hit ratio.
As we can see from Table III, the file cache hit ratio with PMRU
is 87.9%. It is much higher than any other algorithms. This proves
that it might be a good choice for Mandelbrot distribution P2P traffic
where not too much very hot files exist. For load balance property,
LRU displays the best performance and our GDR is in the second
place. However, LFU and PMRU also has good results.

In summary, we believe that the cache placement policy has higher
influence than cache replacement policy in fully distributed P2P
cache. As we can observe from Table III, because we used PSP cache
placement algorithm, all the four cache replacement algorithms show
reasonably good performance on all the metrics.

To evaluate the performance of the four replacement strategies for
unpopular objects, we also compute CDFs for cache capacity like
we did in previous experiments. In the simulation, we use HDHT as
network architecture and PSP as placement strategy. Figure 4 shows
the results. PMRU only uses 45% overall cache space to store top
10,000 popular files compared to the worst 63% in LFU. Clearly,
PMRU has the best performance since it tends to keep as many
different objects as possible.

E. The Optimal Number of Layers

To study the cache performance under different number of layers in
HDHT, we design experiments to assess the average query hops and
load balance properties. The network size is 10,000, the maximum
number of layers is 6, and the cache size is 10 on each peer. All the
other configurations are the same as previous experiments. Figure 5
shows the results of the combination of PSP placement and GDR
replacement under different layers. When we increase the number
of layers, the average query hops decrease sharply until it reach to



S
2
8
&
(8]
Q
S /
g 20/ LFU ——
LRU
‘ PMRU
0 GDR
0 10,000 20,000 30,000 40,000 50,000
Object number

Fig. 4. The cache capacity CDF for different replacement strategies

T T T T 3000
Avg query hops s

Load balance ———
1 2500

1 2000

1 1500

Avg query hops
Load balance

1 1000

2 3 a 5 6
Layer

Fig. 5. The optimal number of layers

four. When the number of layers is one, both avg query hops and
load balance are the worst. This is because the network architecture
in this situation is DHT which only has a global layer. The network
architectures in which the number of layers is bigger than one are all
HDHT. When the number of layers is small, such as two, there are
too many peers in each sub-network and this situation will result in
higher query delay. However, when the number of layers is greater
than a certain value, the sub-networks of lower layers contain a small
amount of peers. Searching in these sub-networks is always failed.
This is why the query delay become worse when the number of
layers is larger. To achieve the best performance, we have to choose
a right size. As we can see from Figure 5, a 3-layers HDHT system
represents the best performance.

Also shown in Figure 5, at first, the load balance performance
is worse in an overlay with a smaller number of layers than in an
overlay with a larger number of layers. This is because the smaller the
number of layers, the smaller number of copies we can generate for an
individual object, and load imbalance problem can easily happen. As
more sub-networks are used, load balance is improved. We found that
the system with 3-layers has the best load balance performance. We
found, under such a circumstance, we can achieve a good compromise
between the maximum number of copies for each object as well as
the number of queries which could reach a certain copy. After that,
as more sub-networks are generated with the increase of layers, too
many copies for an object will be generated and as we discussed
before, it will reduce the effectiveness of our caching algorithms.
Clearly, choosing the right number of layers could have great impacts
on the system overall performance.

FE. Different Cache Size

We perform experiments to analyze the performance under differ-
ent cache sizes. We run the simulation for LSP, PSP, LFU, GDR
with HDHT architecture, and the settings are same as previous
experiments. Figure 6 shows the results for the combination of
LSP/PSP placement and LFU/GDR replacement algorithms.

As can be seen from Figure 6(a), as the cache size increases, the
query delay becomes smaller for all scenarios. The reason is that more
requested objects can be found during the query processing, and the
query path is shortened. Figure 6(b) shows that the larger the cache
size, the higher query cache hit ratio we can achieve. Obviously, this

TABLE IV
COMPARISON OF PC AND NO-PC
[ metrics [[ PC [ no-PC ]

Avg Query Hops 4.35 4.82
Avg Query Distance 603 669
Query Cache Hit Ratio (%) 534 69.1
Load Balance 410 415
File Cache Hit Ratio (%) 73.8 53.2

is because we have rooms to cache more distinct objects. However,
the performance difference between cache size 25 and cache size
30 is very small. It indicates that total cache capacity for size 25
on each peer is large enough to hold almost all query traffic in our
current configuration. No further improvement can be obtained by
unceasing the cache size. As shown in Figure 6(c), load balance
is mainly determined by the caching algorithms we use. The cache
size has little influence on load balance performance. Overall, the
combination of LSP and GDR achieves the best performance.

G. Analysis of Over-caching Problem

In this section, we implement some experiments to evaluate system
performance about over-caching problem. As previous discussion, hot
resources will occupy a lot of cache space and many established
caches have rarely been used. This makes many other low popularity
objects have no chance to be established cache, thus reduces cache
efficiency of the system. In this paper, we propose proactive clean
(PC) to eliminate those unnecessary cache for hot objects. We use
PSP as placement strategy and GDR as replacement strategy to
evaluate PC performance. In the simulation, we set T), to 3, T} =
2. The experimental results are shown in Table IV. As we can see,
taking PC strategy is better than not using PC in all metrics. PC has
the biggest improvement compared to no-PC in file cache hit ratio,
and it caches more 20.6% distinct objects. The extra cache cleaned
by PC is rarely used, so it will not affect system performance. The
space cleaned by PC can store the cache for other objects, thus this
strategy improves query delay and query cache hit rate. We can see
these improvements in Table IV.

IV. RELATED WORKS

To relieve the burden imposed by P2P traffic, design and im-
plement an effective caching infrastructure in P2P systems attracted
great interests from both industry and academia [11] [12]. However,
it is difficult due to the unique features such as self-governing, and
dynamic membership, large number of peers, and even larger amount
of shared files in P2P applications.

A. Wierzbicki et al. discussed different features of P2P traffic and
web traffic in [13]. They proposed specialized cache replacement
policies such as MINRS and LRSB. They also conducted simulation
experiments to evaluate the performance of various replacement
policies for fasttrack traffic. However, they still used the same
architecture as web caching by only considering caching policies for a
dedicated proxy server (providing cache services for peers within the
boundary of an Intranet). The clients themselves are not participated
in the caching service.

In [7], O. Saleh et al. conducted a passive measurement study
on Gnutella file sharing network, and showed that the popularity of
P2P objects can be modeled by a Mandelbrot-Zipf distribution. They
examined the impacts, and found that relying on object popularity
alone may not yield high hit rates/byte hit rates. Finally, they
designed a new caching algorithm for P2P traffic that is based on
segmentation, partial admission and eviction of objects. Their work is
very helpful to understand P2P workload characteristics. However, it
is still considering a dedicated approach instead of a fully distributed
scenario.

In [5], M. Hefeeda et al. proposed similar idea by deploying caches
at or near the boarder of the ASs (autonomous systems), pCache will
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intercept P2P traffics go through the AS, and try to cache the most
popular contents. The cache size is relatively small, and the objects in
P2P applications are very big, so the effectiveness of this approach
is doubtable. Furthermore, pCache itself became a bottleneck and
a single point of failure which affect its efficiency. To solve this
problem, G. Dan proposed collaborating relay caches among ISPs
in order to minimize the peer-to-peer traffic costs and reduce WAN
traffic [14]. Their concentrations are focus on cache coordination, few
discussion are related to exploiting the resources on ordinary peers.

In PROD [15], we proposed a novel and efficient algorithm
to improve the file retrieving performance in DHT based overlay
networks. In PROD, when a file or a portion of a file is transferred
from a source peer to the client, instead of creating just one direct
link between these two peers, we build an application level connection
chain. Along the chain, multiple network links are established. Each
intermediate peer on this chain uses a store-and-forward mechanism
for the data transfer. Thus, it can greatly reduce the user perceived
retrieving performance. PROD can be combined with the caching
strategies to further improve the performance.

Squirrel [16] is a fully decentralized, peer-to-peer web cache. Web
caching workloads are taken by all the clients and the dedicated proxy
server is eliminated. The key idea in Squirrel is to facilitate mutual
sharing of web objects among client nodes. It enables web browsers
on desktop machines to share their local caches, to form an efficient
and scalable web cache, without the need for dedicated hardware and
the associated administrative cost. It uses a self-organizing, peer-to-
peer routing substrate called Pastry [17] for its object location service,
to identify and route to nodes that cache copies of a requested object.
In Squirrel, each node performs both web browsing and web caching.
However, it is not a caching algorithm for P2P traffic.

V. CONCLUSIONS

Caching techniques are widely used to boost the performance in
large-scale distributed applications. However, as one of the most
bandwidth consuming applications on the Internet, not enough efforts
have been conducted on P2P caching. In this paper, we propose novel
and effective cache placement and replacement algorithms for P2P
caching. Unlike previous works, our algorithms can be applied to
build a fully distributed cache in P2P systems. We use a hierarchical
query infrastructure to select an adequate number of cached copies
for the object with different popularity and determine the locations of
these copies carefully in order to improve cache effectiveness. To the
best of our knowledge, this is the first work to address these issues
using this approach. We compare our design with various common
and heuristic caching algorithms by conducting extensive simulation
experiments. We observe that combined with the hierarchical query
infrastructure, our caching strategies can deliver lower query delay,
better load balance and higher cache hit ratios. Our algorithms
effectively relieve the over-caching problems for the most popular
objects and offer satisfactory caching performance for other types of
objects.
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