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Abstract : How to ded with uncertainty is crucid in exact
concept mapping between ontologies. This paper presents a
new framework on modeing uncertainty in ontologies based
on bayesan networks (BN) . Inour gpproach, ontology Web
language (OWL ) is extended to add probahilistic markupsfor
attaching probability information, the source and target ontol-
ogies (expressed by patulous OWL) are trandated into bayes-
ian networks (BNs) , the mapping between the two ontologies
can be digged out by constructing the conditiona probability
tables (CPTs) of the BN usng aimproved agorithm named
FIPFP based on iterative proportiona fitting procedure
(IPFP). The basic idea of thisframework and agorithm are
vaidated by postive results from computer experiments.
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0 Introduction

mapping is the first step to be reslved™ . If we want to
get exact mappinginformation, we need to dea with the prob-
lem of uncertainty!®.

Uncertainty becomes more prevaent in concept mapping
between two ontologies. Semantic gmilarities between con-
cepts are difficult to represent logicaly, but can easly be re-
presented probahilistically. This has motivated recent develop-
ment of ontology mapping taking probahilistic approaches,
such as Gay and Lesbian Universty Employees (L UE) and
Ontology Mapping Enhancer (OMEN)™®*!. However , these
existing approaches fal to completely address uncertainty in
mappi ng.

The work reported in this paper involved in a number of
dgnificant ways, in which uncertainty in ontology mapping
can be dedt with properly. Our system framework cond sts of
three components:  an ontology encoding module to change
the raw ontology to a ontology with probahbility;  a trang-
tion part to trandate given ontologies into Bayedan networks
(BN ;  aconcept mapping module that takes a set of raw
dmilarities learned from domain knowledge or given by ex-
perts asinput and then finds mappings between conceptsfrom
two different ontologies based on evidentia reasons across two
BNs can be found.

I n many semantic interoperability applications, ontology

1 Technology Background

1.1 Web Ontology Language
Web Ontology Language (OWL) is desgned to be utili-
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zed by users who need to process the content of informar
tion ingead of just presenting information to humans.
OWL fadlitates have greater machine interpretahility of
Web content than that supported by Extensble Markup
Language (XML), Resource Description Framework
(RDF) and Resource Description Framework Schema
(RDF9 by providing additiona vocabulary dong with a
formal semantics'® .
1.2 Bayesian Network

Cenerdly , aBayesan Network (BN) of nvariables
condssof a Directed Acydic Graph (DAG) of n nodes
and a number of arcs. Nodes Xiin a DA Goorregpond to
random variables, and directed arcs between two nodes
represent direct causd or influentia relations from one
variable to the other'™ . The uncertainty of the relation-
ship is represented by the condtiona probability table
(CPT) P(Xi| Ti) aswodated with each node Xi, where
Tiisthe parent st of Xi. Under a conditiona indepenct
ence assumption, thejoint probability dstributionof X =

{ Xt, , Xn} can be factored out as a product of the
CPTs: P(X = x) = P(xi| Ti) .
( ) iEl (x| T)

1.3 lterative Proportional Fitting Procedure (IPFP)

For a given distribution Q (x) and congstent con-
srants R, IPFP convergesto Q™ (x) that is a projection
of @ on R Thisis done by iteratively modifying the dis
tributions acoording to the following equation, each time
usng one congrant in R:

(%) = Qe1(x) - 01y

Where mis the number of constraints R, and i =
((k- 1) mod m) +1 determines the congtraint used at
step KO,

2 Encoding Probabilities in OWL

In our approach, OWL is extended to augment
probahility information. These probabilities can be ether
provided by domain expertsor learned from Web data as
described in the previous section.

For a concept cdlass Cand its parent concept dass st
Sc, two probahilities are asfollows:

Prior or margina probahility P(Q ;
Conditiona probability P(C| Oc) where Oc <
Tc, Tc# O,0c# @.

To add such uncertainty information into an existing

ontology , we should treat probahility as a kind of re-
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ource, two OWL dasses { PriorProb” ,“ CondProb”)
are augmented'®’ .

A probahility with the form P(C) is defined as an
ingtance of class' PriorProb” , which has two mandatory
properties:* hasVarible’ and’ hasProbVaue’.

For example, P(C) =0. 8, the prior probahility,
whichisan arbitrary individua belongsto class C, can be
expressed asfollows:

Vaiablerd:ID= C
hasClass C / hasCass
hasate True / hasSate
/ Variable
PriorProb rdf :ID = P(Q"
hasVariable C / hasVariable
hasProbVaue 0.8 / hasProbVaue
| PriorProb

A probahility with such aformis defined as an i
gtance of dass' CondProb” , which has three properties:

“ hasCondition” | hasVariable” and“ hasProbVaue”.

The range of properties” hasCondtion” and“ hasVari-
able” isa defined class named’ Variable” , which has two
properties’ hasCass’ and’ hasState”.“ hasCass’ points
to the concept dass about this probahility and* hasState’
gvesthe' True” (belongto) or* Fasg’ (not belong to)
date of this probahility.

3 System Framework

3.1 Encoding and Pre-Processing

In our framework , the resource and target ontology
should be encoded into a new ontology with probahility
information. Theinformation can be obtained by learning
from Web ontology information or being defined by ex-
perts. After this encoding module, the ontology with
probahility has to be checked through syntax checker and
semantic checker , then can be trandated to BNs.

3.2 Structural Translation

A st of trandation rulesis developed to convert an
OWL ontology into a DA Gaf BN.

The genera princple underlying these rules is that
al dasses are trandated into nodesin BN, and an arcis
drawn between two nodesin BN , if the two correspond
ing classes are related by a“ predicate” in the OWL
filel™® | with the direction from the superdassto the sub-
cdass. Control nodes are created during the trandation to
fadlitate modding relations among class nodes that are
edified by OWL logica operators, and there is a conr
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verging connection from each concept nodes involved in
this logica relation to its gedfic control node. There are
five types of control nodesin tota , which corregpond to
thefive typesof logica relations: They are'“ and” (owl :
intersectionOf) [ or” (owl :unionOf) * not” (owl :comr
plementOf) ,“ digoint” (owl.dsothth) and“ same
as’ (owl :equivaentdass) .
3.3 Constructing Conditional Probability Tables
The nodesin the DA G obtained from the structura
trandation step can be divided into two digoint groups:
Xr, Nodes representing concepts in ontology , and Xc,
control nodesfor bridging logica relations. The CPT for
aoontrol nodein Xc can be determined by the logica re-
lation it represents 0 that when its gateis' True” , the
corregponding logical relation holds among its parent
nodes. When al the control nodes’ <ates are st to
“ True” (denote this sate as CT) , dl the logica relations
defined in the orignal ontology are held in the trandated
BN™. The remaning issue is then to construct the
CPTs for each nodein Xr o that P( Xg| CT) , the joint
digtribution of dl regular nodesin the subgpace of CT.
Based on this gtructura trandation rules, there are
five types of control nodes correspond ng to thefive logic
operaiorsm OWL. They ar¢’ Complement” * Digoint” ,
“ Equivdent” * Intersection” and Union”. Their CPTs
are determined by the logica reation among its parent
concept class nodes, which are to be edfied later.
Hgure 1 below isaBN trandated from a smple on-
tology. Inthisontology ," Animal” isa primitive concept
dass;* Mde” “ Femde” ,“ Human” are subcasses of
“ Animd” ;* Mae" and® Femde” are digoint with each
other;“ Man” is the intersection of * Made” and
“ Human” ;* Woman” is theintersection of Femaé’ and

Animal

{
Union
Eat

Intersection

Disjoint
I \

Intersection

Fig.1 A trandation example
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Human” ; “ Human” is the union of * Man” and

“ Woman". The following probahility constrants are at-

tached to:
Xr={Animd , Mde, Femae, Human, Man, Woman}
Xc={Digoint, Intersection, Union}

P(Animd) =0.50; P(Ma¢ Anima) =0.50;

P(Female| Animd) =0.48; P(Human| Animd) =
0.10;

P(Man| Human) = 0. 49; P(Woman| Human) =
0.51.
3.4
dure

Theissueisto congruct CPTs for the regular nodes
in Xr 90 that P(Xg| CT) , the joint probahility distribu-
tion of al regular nodes in the subgpace of CT, is conr
dstent with al the given prior and conditiona probabili-
ties attached to the nodesin Xr. To address theseissues,
we developed an a gorithm (I IPFP) to approximate these
CPTs for Xr based on the IPFP.

Hrs we divide congtraintsinto two types. Ri(y) is
sad to beloca if Y contans nothing € se except one vari-
able X; and zero or more of its parents. Otherwise,
Ri(y) issadto be nonloca. How to deal with locd and
norrlocal congrantsin FIPFP is given in the next two
subsections.

Locd congrants

Suppoe Q1 = .ElQK.l(xi| Ti) . Condder alocd

oondrant R(y) =R (x,Z ST;). 9nceit isa congrant
only on x; and some of its parents, updating Q«-1(X) by
R (y) can be done by only updating Q-1 (x| Tj) , the
CPT for x; , while leaving dl other CPTs intact.

Snce Q-1 (x| T;) isan conditiona distribution on
Xi,Q-1(x] Tij) R(y)/ Q-1 (y) isin generd not a
probahility distribution, and thus cannot be used as the
CPT for X;in Q«(x). Thisproblem can be resolved by
normaization. The update rule becomes:

Improved-iterative Proportional Ftting Proce-

_ RQy)
x(yl 9 = Qealy] 9 - 01 (y) -y ©
Q(xi| T) = Qea(x| T|) Vx €y
where
ZXij-l(Xll Ti) 01y (3)

Snceonly the CPT for X; ischanged, thisrueleadsto
QX = Qx| T) DQK i(xi] ) (4
Therefore Q«(x) is condsent with G, it satidies
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the structurd congtrant.
Norrlocal congtraints
Now we generalize the idea of rule (2) to norrlocal
congrants. Without lossof generdity , consder one such
congraint R (y) where Y gpans more thanone CPT. Let
multiply al CPTs for variablesin Y, one can consgtruct a
conditional digtribution

Q2 (Y] 9 = ”Qk (x| T) (5
With equation (5) , we de‘lne

Q1 (X = Qe1(X)

= Qe1(y] 9 - ”Qk 1(xi] T) (6)

Now R (y) becomes locd to the table Gi-1(y| 9 ,

we can obtain Q«(x) by obtaining Qk(y| 9 usng the
Eq. (2) for loca constraint.
Ayl 9 = QGealyl 9 Gy a @
(x| T) = Qea(x| T) Vxi €y
Next , we extract Q«(x;| T;) for dl X; Y from
G(yl'9 by Qx| Tj) = Qx| Tj).
The process ends with
= ”Qk(xil T) - ”Qk-l(xll Ti) (8)
xjéE xlé

Update of Qc-1(x) to Q«(x) by R(y) can be seen
to cong & of three seps:

a)get Gk-1(y| 9 from CPTsfor X; Ybhy Eqg. (5 ;

b) update Gi-1(y| 9 to Qu(y] 9 by R (y) usng
Eq. (7) ;

) extract G (x| T;) from GQc(y] 9 by Eq. (8).

Comparing Egs. (5) , (7) and (8) , thisprocedure of
FIPFP amounts to an iteration of a loca IPFP on
Qe1(y9.

Algorithm FIPFP

FIPFP (No(X) ,R={R,R, ,Rn}){
Sepl Q@ = ‘EIQ)(Xil Ti)
Sep2 {
i=((k-1) mod m) +1;
fR(y=(x,Z €T)) {
Qx| T) = Qealx| T) Qe1(y) O;
Q(xi| T) = Qea(x| T) VI £ ;
}
{
Qer(yl 9 = ”Qk»l(xil T);

X
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_ RO
Qulyl 9 = CGealy| 9 Q1 (y) Q;

Qx| T) = Qx| T) Vx y;
Qx| T) = Qea(x| T) Vx vy
Qei(xi| T) = Qx| T) Vxi;

}

k+ +:

}
Sep3 Return N (X).

}
4 Experiment

4.1 Analysis of Algorithm Eficiency
IPFP
The computation of IPFP ison the entire joint dis
tribution of X at every iteration. Roughly speaking,
when Q«- 1 (X) is modified by constraint Ri(y) , Eq. (1)
requires to check each entry in Q«- 1(X) againg every en
try of R (y) and make the update if x iscondsent with
y. The cost can be estimated as O(2" x 2! ") .
FIPFP
The moderate sacrifice for FIPFP is rewarded by a
dgnificant saving in computation. 9nce R (y) is now
used to modify Gk-1(y| 9 , not Q«-1(x) , the cogt for
esch step is reduced from O(2" - 21) to (2% .
21) where 0(2'9 *M) isthe sze of CPT Qk-1(y| 9.
The savingis O(2" !4 1)
4.2 Comparison of |PFP and I-IPFP
We choose dfferent numbers of the BN structure’ s
nodes, and record the executive time by the different a-
gorithm IPFP and FIPFP. The experiments result is giv-

enin Hg.2.
12

101

Execute time / s

4 6 8 10 12 14 16 ]]8 20
Number of nodes

Fig.2 Comparison o execute time
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The experiment’ s result shows that the efidency of
IPFP precedes that of FIPFP when the number of nodes
is smal , on the contrary the efidency of FIPFP excds
that of IPFP when the number of nodes exceeds the criti-
cd value, and the larger the number is, the more dfec-
tive FIPFPis.

5 Conclusion

In this pgper we present research on probahilistic
extenson to OWL. We have ddined new OWL classes
that can be used to markup probabilities for dasses in
OWL files. We have a0 defined a et of rulesfor trans
lating OWL ontology taxonomy into DA Gand provided a
new agorithm I IPFP to construct CPTs for dl the regu
lar nodes. The trandated BN is asodated with a joint
probahility digribution over the goplication domain con-
ddent with given probabilities. Fndly we validate our
method by doing experiments, and give a compari on of
the algorithm IPFP and improved one I IPFP.

In the future we are going to work on improving
dfidency of the dgorithm continualy to satidy the in-
creadng number of nodes.
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