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Abs t rac t : This paper presents two one2pass algorithms for
dynamically computing frequency counts in sliding window
over a data stream2computing frequency counts exceeding us2
er2specified thresholdε. The first algorithm constructs sub2
windows and deletes expired sub2windows periodically in slid2
ing window , and each sub2window maintains a summary data
structure. The first algorithm outputs at most 1/ε + 1 ele2
ments for frequency queries over the most recent N elements.
The second algorithm adapts multiple levels method to deal
with data stream. Once the sketch of the most recent N ele2
ments has been constructed , the second algorithm can pro2
vides the answers to the frequency queries over the most re2
cent n ( n≤N ) elements. The second algorithm outputs at
most 1/ε+ 2 elements. The analytical and experimental re2
sults show that our algorithms are accurate and effective.
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0　Int roduction

I
n several emerging applications including networking , tele
communications , financial services , e2commerce , and sen2

sor networks , data takes the form of data streams as opposed
to finite stored datasets. Data stream is modeled as an infinite
sequence of finite lists elements , and differs from traditional
data in three primary aspects : ①continuity , ② unknown or
unbounded length , and ③ inability to backtrack over previ2
ously arrived items.

Approximate frequency counts over data streams play an
important role in many data streams’decision support sys2
tems , but traditional count algorithms are not suitable for ap2
proximate frequency counts over data streams. Hence , it is
necessary and significant to study count algorithms over data
stream.

Until now , approximate frequency counts over data
streams have received considerable attention and many re2
search breakthroughs have been made. Misra and Gries[1 ]

firstly presented deterministic algorithm for ε2approximate
counting over data streams. This algorithm had been improved
by Demaine et al [2 ] and Karp et al [3 ] . Manku and Motwani[4 ]

presented sticky sampling counting algorithm and lossy count2
ing algorithm.

But these algorithms ignore the fact that the recent ele2
ments of a stream are more important than those arrived a long
time ago. Using a sliding window[5 ] , Arasu and Manku[6 ]

brought forward an algorithm forε2approximate counts over
data streams. The query time is quite long. Further , the out2
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put includes too many false positives[7 ] .
The task we will tackle in this paper is defined as

follows :
Given N andε, we have designed a one2pass algo2

rithm to compute theε2approximate frequency of frequent
elements of the most recent N elements using as little
main memory as possible. Frequent elements of the most
recent N elements are items whose actual frequencies ex2
ceedεN .

1　Relate d Work

1. 1　Fre que nt Ele me nts Algorit hm
Fisher and Salzberg[7 ] brought forward majority al2

gorithm for finding an item whose frequency is more than
half of the total number. By making one pass over data2
set , the algorithm finds one element that is guaranteed to
be the majority element if any such element exists.

A natural generalization of this method to find fre2
quent items whose frequencies exceed N/ k was given by
Misra and Gries[1 ] . The same algorithm has been redis2
covered recently by Demaine et al [2 ] and Karp et al [3 ] ,
who reduced the processing time to O (1) in the worst
case.

Manku and Motwani[4 ] presented lossy counting al2
gorithm , a deterministic algorithm.

Above all , lossy counting algorithm is well suitable
to the skewed data stream. Further , the algorithm can be
adapted to compute association rules[8 ] over data
streams.

Though above algorithms are suitable for data
streams , they do not have obvious counterparts in the
sliding window model.

Golab et al [9 ] proposed an algorithm that uses the
basic window model[10 ] to find frequent elements in slid2
ing window. This algorithm uses limited memory , re2
quires constant processing time per element , and makes
only one pass over the data. But in the worst case , the
memory cost is very large.

Arasu and Manku presented various deterministic
and randomized algorithms forε2approximate counts and
quantiles[6 ] . These algorithms are suitable for both fixed2
size sliding window and variable2size sliding window. But
the large number of false positives the result includes de2
grades severely value in use.
1. 2　Sliding Window S ynop sis Data St ructures

The sliding window model is useful for discounting

stale data in data stream applications.
In this model , data elements arrive continually and

old items must be simultaneously evicted from the win2
dow so that only the most recent N elements are used
when answering queries.

Zhu and Shasha introduced basic windows to incre2
mentally compute simple windowed aggregates in sliding
window[10 ] . The window is divided into equally2sized
basic windows and only a synopsis and a timestamp are
stored for each basic window. This method does not re2
quire the storage of the entire sliding window , but results
are refreshed only after the stream fills the current basic
window. If the available memory is small , the number of
synopses that may be stored is small and the refresh in2
terval is large.

Exponential histogram ( EH) was introduced by Da2
tar et al [5 ] and recently expanded by Qiao et al [11 ] to pro2
vide approximate answers to simple window aggregates at
all times. The idea is to build basic windows with various
sizes and maintain a bound on the error caused by count2
ing those elements in the oldest basic window which may
be expired.

Gibbons and Tirthapura[12 ] improved the results
from Datar et al [5 ] for computing counts and sums over
sliding windows. They present a new data structure
called waves that have a worst2case update time of O(1)
compared to O(log N) for the EH data structure.

2　The Firs t Algorit hm

2. 1　The Des crip tion of the Firs t Algorithm
In this section , we bring forward one algorithm for

frequency counts in sliding window over data stream.
The answers produced by the algorithm have the follow2
ing guarantees :

1) ( f e -εN) < �f e ≤f e . �f e represents the approxi2
mate frequency of element e in current sliding window
with size N ; f e represents the true frequency of e in cur2
rent sliding window with size N .

2) All elements whose true frequencies exceedεN
are output. There are no false negatives.

We assume that 1/εandεN are integers to avoid
floors and ceilings in expressions. For arbitrary N andε ,
we identify N0 andε0 such that :

a) N0 , 1/ε0 andε0 N0 are integers ;
b) N≤N0 < N + 1/ε0 ;
c)ε0 N0 ≤εN . We then use N0 andε0 in the place
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of N andε.
We employ the notion of timestamp which corre2

sponds to the position of an active data element in the cur2
rent sliding window. We timestamp the active data ele2
ments from right to left , with the most recent element’s
timestamp being 1. Clearly , the timestamps change with
every new arrival. We adopt the solution provided by Datar
et al [5] to avoid making explicit updates of timestamps.

In this paper , we employ sub2windows that are une2
qually2sized windows. Moreover , there are overlaps
among sub2windows.

For one sub2window , we keep a synopsis and a tim2
estamp which is identical to the timestamp of the oldest
element in this window. When its timestamp becomes N
+εN , the sub2window expires and is dropped. For the
sliding window with size N , we create one new sub2win2
dow perεN elements. Hence , there are at most 1/ε+ 1
active sub2windows in current sliding window. The size
of sub2window is not fixed , which increases gradually
with every new arrival until the sub2window expires. It is
obvious that the size of sub2window equals its times2
tamp. Once the sub2window is created , MG algorithm[1 ]

always runs over this window and updates the synopsis
with every new arrival until the window expires.

The detailed description of the first algorithm is as
follows :

When a new data element e arrives ,
1) Increase variable COUN T by 1 , which is initial2

ized to 0.
2) If COUN T = N +εN , delete the window with the

oldest timestamp , and assign N to COUN T.
3) If COUN T modεN = 1 , create a new sub2win2

dow with timestamp 1 , and execute MG algorithm with
parameterε/ (ε+ 1) over this new window until this win2
dow is deleted.

4) Append element e to all active sub2windows.
When answering frequency queries , we just find the

oldest active sub2window QW in current sliding window.
Obviously , the synopsis of QW provides the correct an2
swers we need.
2. 2　The Analysis of the Firs t Algorithm

Theorem 1　Algorithm described in section 2. 1 al2
lowsε2approximate frequency counts to be computed over
the most recent N elements. Using O (1/ε2 ) space , it
provides at most 1/ε+ 1 candidate elements and does not
make false negatives. Further , it guarantees that ( f e -
εN) < �f e≤f e .

Proof 　For the sliding window with size N , we cre2
ate one sub2window perεN elements. When its times2
tamp becomes N +εN , the sub2window expires and is
dropped. Hence , there are at most 1/ε+ 1 sub2windows
in current sliding window.

In addition , the space complexity of MG algorithm
is O(1/ε) . So , algorithm described in section 2. 1 utilizes
O(1/ε2 ) space.

Because when answering frequency queries , we just
find the oldest active sub2window QW with timestamp T
which is larger than or equal to N to report the candidate
elements.

In addition , the timestamp of QW is smaller than N
+εN , otherwise , the sub2window is dropped. For QW ,
the MG algorithm guarantees that all elements whose fre2
quencies exceed Tε/ (ε+ 1) must be stored. As long as
we guarantee thatεN is larger than or equal to Tε/ (ε+
1) , algorithm described in section 2. 1 does not make
false negatives.

Clearly , Tε/ (ε+ 1) < ( N +εN)ε/ (ε+ 1) =εN
According to MG algorithm , ( f e -εN) < �f e≤f e .
Further , the synopsis created by MG with parame2

terε/ (ε+ 1) contains at most 1/ε+ 1 elements. Hence ,
we output at most 1/ε+ 1 elements.

MG algorithm requires O (1) amortized processing
time per element , and algorithm described in section 2. 1
has 1/ε+ 1 sub2windows in current sliding window.
Hence , algorithm described in section 2. 1 requires O(1/
ε) amortized processing time per element .

The query time is O(1) .

3　The S ec ond Algorit hm

3. 1　The Des crip tion of the Sec ond Algorit hm
Once the sketch has been constructed , algorithm de2

scribed in section 2. 1 allowsε2approximate frequency
counts to be computed over the most recent N elements ,
but it is of no effect for answering frequency queries over
the most recent n ( n < N) elements.

In this section , we present an algorithm to deal with
this question.

We conceptually make L + 1 copies of the stream ,
where L = log(εN) We say that these copies are at dif2
ferent levels , which are numbered sequentially as 0 , 1 ,
⋯,L . We maintain at most 1/ε+ 1 active sub2windows

for each level. We treat the size of sliding window in kth
level as 1/ε2k except that the size of sliding window in
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last level is N . Within kth level ( k < L) , we create one
new sub2window per 2k elements , and delete it when its
timestamp becomes (1 + 1/ε) 2k . Within last Level , we
create one new sub2window perεN elements , and delete
it when its timestamp becomes N +εN . Once a sub2win2
dow is created , MG algorithm with parameterε/ (2ε+ 1)

always runs over this window and updates the synopsis
with every new arrival until the window expires.

When a new data element arrives , we insert it into
all levels. In each level , the newest element is processed
in the light of algorithm described in section 2. 1.

When answering the frequency queries for n≤N ,
first , we calculate k = log(εn) . Then , within kth level ,
we find the sub2window QW whose timestamp exceeds or
equals n and is closest to n. Last , we output the synopsis
of QW.
3. 2　The Analysis of the Sec ond Algorit hm

Theorem 2　Once the sketch of the most recent N
elements has been constructed , algorithm described in
section 3. 1 allowsε2approximate frequency counts to be
computed over the most recent n( n≤N) elements. Using
O(1/ε2 logεN) space , it provides at most 1/ε+ 2 candi2
date elements and does not make false negatives. Fur2
ther , it guarantees that ( f e -εn) < �f e≤f e .

Proof 　The sketch is maintained in log (εN) + 1
levels , each of which includes 1/ε+ 1 sub2windows. Fur2
ther , each sub2window needs O(1/ε) space. So , we need
O(1/ε2 logεN) space for storing sketch.

When answering frequency queries over the most re2
cent n( n≤N) elements , we find sub2window QW with
timestamp T which is larger than or equal to n and is clo2
sest to n in level k = log(εn) . So , n > T - 2k and n≤
T. Obviously , (1/ε) 2k - 1 < n. According to MG algo2

rithm , we cause no false negatives if we guarantee that
ε/ (2ε+ 1) T≤εn.

When T = n , there are no false negatives.
When T > n , without loss of generality , we assume

T = u2k - 1 + v , v < 2k - 1 . u must be larger than or
equal to 1/ε; otherwise , (1/ε) 2k - 1 > n. For u , there are
two cases : u < 1/ε+ 2 ; u≥1/ε+ 2.

If u is smaller than 1/ε+ 2 ,ε/ (2ε+ 1) T <ε/ (2ε+
1) ( (1/ε) 2k - 1 + 2k ) = 2k - 1 . Obviously ,εn > 2k - 1 .
Hence ,ε/ (2ε+ 1) T < εn. Consequently , when T is
smaller than (1/ε) 2k - 1 + 2k , algorithm described in sec2
tion 3. 1 does not generate false negatives.

If u is larger than or equal to 1/ε+ 2 , (1/ε) 2k - 1 +
2k ≤T , then we get 0 ≤2εT - 2ε2k - 2k . Consequent2

ly ,ε/ (2ε+ 1) T≤ε( T - 2k) . In addition , n > ( T - 2k) .
So , when T is larger than or equal to (1/ε) 2k - 1 + 2k , no
false negatives are generated by algorithm described in
section 3. 1.

In conclusion , algorithm described in section 3. 1
does not generate false negatives.

Because the parameter of MG algorithm over sub2
window is set toε/ (2ε+ 1) , so there are at most 1/ε+ 2
candidate elements to be output .

According to the MG algorithm , ( f e -εn) < �f e ≤
f e .

When a new element arrives , it will be inserted into
all sub2windows. Hence , algorithm described in section
3. 1 requires O(1/εlogεN) amortized processing time per
element .

The query time is O(log(1/ε) ) .

4　Exp erime nts

The figures are shown in Figs. 126.
We experiments with data stream that follows Zipf

distribution. In our experiments , the Zipf parameter z is
set to 0. 9. All experiments are carried out on a 1. 6 GHz

Fig. 1　The changes of the number of elements output by algo2
rithm described in section 2. 1 while both N andεchange

Fig. 2　The changes of the memory cost of algorithm described
in section 2. 1 while both N andεchange

682

© 1994-2006 China Academic Journal Electronic Publishing House. All rights reserved.    http://www.cnki.net



Wuhan University J ournal of Natural Sciences 　Vol. 11　No. 1　2006

Fig. 3　The changes of the number of elements output by algo2
rithm described in section 3. 1 while both N andεchange

Fig. 4　The changes of the memory cost of algorithm described
in section 3. 1 while both N andεchange

Fig. 5　The comparison of the number of output data between
algorithm described in section 2. 1 and Arasu’s algorithm while
N is 2000000

Pentium V processor running Windows Server.
Firstly , we carry out experiments to survey the per2

formances of Algorithm described in section 2. 1 and Al2
gorithm described in section 3. 1.

According to Fig. 1 and Fig. 3 , we can draw a con2
clusion that the numbers of elements output by our algo2
rithms are independent of the size of sliding window. The
number of output data in algorithm described in section
2. 1 fluctuates between 0 and 1/ε + 1 while the number
of elements output by algorithm described in section 3. 1
fluctuates between 0 and 1/ε + 2. Moreover , our algo2

Fig. 6　The comparison of memory cost between Algorithm de2
scribed in section 2. 1 and Arasu’s algorithm while N is 4 000 000

rithms are more likely to output more elements asεde2
creases. From Fig. 2 and Fig. 4 , we can conclude that the
memory cost of algorithm described in section 2. 1 keeps
steady in despite of the increment of sliding window’s
size while the memory cost of algorithm described in sec2
tion 3. 1 keeps increasing trend as the sliding window’s
size increases. It is obvious that the memory costs of al2
gorithm described in section 2. 1 and algorithm described
in section 3. 1 are influenced byε. Further , the smallerε
is , the larger the memory costs of algorithm described in
section 2. 1 and algorithm described in section 3. 1 are.

Last , we compare the performances of algorithm de2
scribed in section 2. 1 and Arasu’s algorithm[6 ] .

According to Fig. 5 , which depicts the comparison
of the number of output data between algorithm described
in section 2. 1 and Arasu’s algorithm , it is obvious that
Arasu’s algorithm outputs more elements than 1/εwhile
algorithm described in section 2. 1 outputs at most 1 + 1/
εelements. Figure 6 reveals the comparison of memory
cost between algorithm described in section 2. 1 and Ara2
su’s algorithm. Arasu’s algorithm utilizes more memory
than algorithm described in section 2. 1 for fixedε. Fur2
ther , asεdecreases , the memory cost of algorithm de2
scribed in section 2. 1 increases while the memory cost of
Arasu’s algorithm keeps non2decreasing trend. The non2
decreasing trend is caused by the fact that in Arasu’s al2
gorithm arbitraryεis transformed toε′such that 1/ε′is
the power of 2 andε′does not exceedε.

5　Conclusion

In this paper , we present two algorithms for compu2
ting frequency counts in sliding window over data stream.
The first algorithm outputs at most 1/ε + 1 elements
using O (1/ε2 ) space. Above all , the space complexity
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keeps invariable despite the increment of sliding
window’s size. Once the sketch is constructed for sliding
window with size N , the second algorithm outputs at
most 1/ε+ 2 elements for the frequency queries over the
most recent n( n≤N) elements.

Though the dataset output by our algorithm includes
all frequent items in sliding window , it includes many el2
ements that do not belong to frequent items. In the fu2
ture , we will analysis the probability of false positives.
Another work is that depending on the distribution of da2
ta stream , we will adjust our algorithm dynamically to
generate more accurate dataset . Relating to our work ,
the top2k query in sliding window is an open problem.
The studying of data stream is in its infancy , many work
need to be done.
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