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Abstract : Thispaper presents two onepass a gorithmsfor
dynamically computing frequency counts in diding window
over a data streamrcomputing frequency counts exceeding us
er- pedified threshold€ . The first dgorithm constructs sub-
windows and deetes expired sub-windows periodicaly in did-
ing window , and each sub-window maintains a summary data
structure. Thefirst dgorithm outputs at most /¢ + 1 de-
mentsfor frequency queries over the most recent N eements.
The second agorithm adapts multiple levels method to ded
with data stream. Once the sketch of the most recent N de-
ments has been constructed, the second dgorithm can pro-
vides the answers to the frequency queries over the nost re-
cent n(n< N) dements. The second agorithm outputs at
most 1/€ + 2 dements. The andyticd and experimentd re-
sults show that our agorithms are accurate and ef ective.
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0 Introduction

n several emerging applications including networking, tele

communications, finanda services, e.commerce, and sen-
r networks, data takes the form of data streams as opposed
to finite stored datasets. Data stream is modeled as an irfinite
sequence of finite lists dements, and dffers from traditional
datain three primary agpects:  ocontinuity,  unknown or
unbounded length, and  inahility to backtrack over previ-
oudy arrived items.

Approximate frequency counts over data streams play an
important role in many data streams’ dedson support sys
tems, but traditiond count agorithms are not suitable for go-
proximate frequency counts over data streams. Hence, it is
necessary and sgnificant to study count agorithms over data
stream.

Until now, approximate frequency ocounts over data
streams have recdved condderable attention and many re-
search breakthroughs have been made. Misra and Gried™
firsly presented deterministic agorithm for €-gpproximate
oounting over data streams. Thisa gorithm had been improved
by Demaine et al'® and Karp et al™®. Manku and Motwani'“!
presented sticky sampling counting a gorithm and lossy count-
ing agorithm.

But these dgorithms ignore the fact that the recent de-
ments of a stream are moreimportant than those arrived along
time ago. Using a diding window!® | Arasu and Manku'®
brought forward an agorithm for €-gpproximate counts over
data streams. The query timeis quite long. Further, the out-
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put includes too many false postives .

The task we will tackle in this paper is defined as
follows:

dven N and€ , we have desgned a onepass dgo-
rithm to compute the€-gpproxi mate frequency of frequent
eements of the most recent N elements usng as little
man memory aspossble. Frequent eementsof the most
recent N elements are items whose actua frequendies ex-
ceede N.

1 Related Work

1.1 Frequent HBements Algorithm

Fisher and Sdlzberg!” brought forward mgjority a-
gorithm for finding an item whose frequency is more than
haf of the tota number. By making one pass over data-
st , the dgorithmfinds one eement that is guaranteed to
be the mgjority eement if any such eement exigs.

A natura generdization of this method to find fre-
quent items whose frequendes exceed N/ k was given by
Misraand Gries"!. The same agorithm has been redis
covered recently by Demaine et al'® and Karp et al'®
who reduced the procesdng time to O(1) in the worst
case.

Manku and Motwani'® presented lossy counting a-
gorithm , a determinigtic a gorithm.

Above dl , lossy counting agorithm is well suitable
to the skewed data stream. Further , the agorithm can be
adepted to compute asmdation rules® over data
sreams.

Though above dgorithms are suitable for data
dreams, they do not have obvious counterparts in the
diding window modd.

@lab et al' proposed an adgorithm that uses the
basic window model '™ to find frequent dementsin did-
ing window. This agorithm uses limited memory, re-
quires constant processng time per eement , and makes
only one pass over the data. But in the worst case, the
memory cogt is very large.

Arasu and Manku presented various deterministic
and randomized d gorithms for €-gpproxi mate counts and
quantiles® . These algorithms are stitablefor both fixed
gze diding window and variable-9ze diding window. But
the large number of fal se pogtives the result includes de-
grades severely value in use.

1.2 Sliding Window Synopsis Data Structures
The diding window mode is usgful for disounting
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dde datain data stream gpplications.

In this model , data dements arrive continualy and
olditems must be smultaneoudy evicted from the win-
dow 9 that only the most recent N elements are used
when answering queries.

Zhu and Shasha introduced basc windows to incre-
mentaly compute smple windowed aggregates in didng
window!™® . The window is divided into equally-szed
basc windows and only a synopss and a timestamp are
gtored for each basc window. This method does not re-
quire the storage of the entire diding window , but results
are refreshed only &ter the stream fills the current badc
window. [f the avalable memoryis smdl , the number of
synopses that may be stored is smal and the refresh in-
terva islarge.

Exponentid histogram (EH) wasintroduced by Da-
tar et al’® and recently expanded by Qieo et al'™! to pro-
vide approximate answers to smple window aggregates at
al times. Theideaisto build bagc windows with various
gzes and maintain a bound on the error caused by count-
ing those eementsin the oldest basc window which may
be expired.

Gbbons and Tirthapural™ improved the results
from Datar et al'® for computing counts and sums over
diding windows. They present a new data structure
called waves that have a worst-case update time of O(1)
compared to O(logN) for the EH data structure.

2 The Frst Algorithm

2.1 The Description of the Frst Algorithm

In this section, we bring forward one agorithm for
frequency counts in diding window over data stream.
The answers produced by the dgorithm have the follow-
ing guarantees:

1) (fe-€N) <fe<fe. fe represents the approxi-
mate frequency of element e in current diding window
with 9ze N; fe represents the truefrequency of ein cur-
rent diding window with sze N.

2) All dements whose true frequencies exceed€ N
areoutput. There are no fa s negatives.

We assume that 1/€ and€ N are integers to avoid
floors and cdlingsin expressons. For arbitrary N ande
we identify No and€o such that :

a) No, 1/€o and€o No are integers;

b) N<No<N+1/€o;

) €0 No <€ N. We then use No and€o in the place
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of N andeE.

We employ the notion of timestamp which corre-
goonds to the postion of an active data dement in the cur-
rent didng window. We timestanp the active data de-
mentsfrom right to It , with the most recent dement’ s
timesamp being 1. dearly, the timesamps change with
every new arrival. We adopt the solution provided by Datar
et al'™ to avoid making explicit updates of timestamps.

In thispaper , we employ sub-windows that are une-
qually-9zed windows. Moreover, there are overlgps
among sub-windows.

For one sub-window , we keep a synopgsand a timr
esamp which isidenticd to the timestamp of the ol dest
element in thiswindow. When its timestamp becomes N
+€ N, the sub-window expires and is dropped. For the
diding window with 9ze N, we create one new sub-win-
dow per€ N dements. Hence, there are at most 1/€ +1
active sub-windows in current didng window. The gze
of sub-window is not fixed, which increases gradudly
with every new arriva until the sub-window expires. Itis
obvious that the sze of sub-window equals its times
tamp. Once the sub-window is created , M G a gorithm!™!
aways runs over this window and updates the synopss
with every new arriva until the window expires.

The detaled description of the first dgorithm is as
follows:

When a new data element earrives,

1) Increase variable COUNT by 1, which isinitia-
ized to 0.

2) If COUNT = N +€ N, delete the window with the
oldest timestamp, and assgn N to COUNT.

3) f COUNT mode N =1, create a new sub-win-
dow with timestamp 1, and execute M G a gorithm with
parameter€/ € +1) over this new window until thiswin-
dow is deleted.

4) Append element eto al active sub-windows.

When answering frequency queries, we just find the
oldest active sub-window QW in current diding window.
Obvioudy, the synopss of QW provides the correct an-
swers we need.

2.2 The Analysis of the First Algorithm

Theorem 1 Algorithm described in section 2.1 d-
lowseE-gpproximate frequency counts to be computed over
the most recent N dements. Usng O(L€?) sace, it
provides at most 1/€ +1 candidate elements and does not
make fal se negatives. Further, it guarantees that (fe -
EN) <fe<fe
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Prodf  For the diding window with 9ze N, we cre-
ate one sub-window per € N eements. When its times
tamp becomes N +€ N, the sub-window expires and is
dropped. Hence, there are at most 1/€ + 1 sub-windows
in current diding window.

In addtion, the gpace complexity of M G agorithm
isO(l/e). S, adgorithm described in section 2. 1 utilizes
O(1/€%) gace.

Because when answering frequency queries, we just
find the oldest active sub-window QW with timestamp T
which islarger than or equal to N to report the cand date
elements.

In addition, the timestamp of QW is smaler than N
+€ N, otherwise, the sub-window is dropped. For QW,
the M Ga gorithm guarantees that al dementswhosefre-
quendies exceed E/ € +1) must be stored. As long as
we guarantee that€ N is larger than or equa to E/ € +
1) , dgorithm described in section 2. 1 does not make
false negatives.

Cearly, E/ € +1) < (N+€N)€/ € +1) =€N

Acoording to M Galgorithm, (fe-€ N) < fe < fe.

Further , the synopss created by M G with parame-
tere/ € +1) contains at most 1/€ +1 dements. Hence,
we output at most 1/€ +1 elements.

M G dgorithm requires O(1) amortized processng
time per element , and a gorithm described in section 2. 1
has 1/¢ + 1 sub-windows in current diding window.
Hence, agorithm described in section 2. 1 requires O(1/
€) amortized procesdng time per element.

The query timeis O(1) .

3 The Second Algorithm

3.1 The Description of the Second Algorithm

Once the sketch has been constructed , agorithm de-
sribed in section 2. 1 dlows €-goproximate frequency
oounts to be computed over the most recent N eements,
but it isof no efect for answering frequency queries over
the mogt recent n (n< N) dements.

In this section, we present an agorithm to ded with
this quegtion.

We conceptually make L + 1 copies of the stream,
where L =/ log€ N) | We say that these copies are at dif-
ferent levels, which are numbered sequentially as O, 1,

,L. We maintain at most 1/€ + 1 active sub-windows
for each level. We treat the sze of diding window in kth
level as 1/ 2" except that the sze of diding window in
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last level is N. Within kth level (k<L) , we create one
new sub-window per 2“ eements, and delete it when its
timestamp becomes (1 + 1/€) 2. Within last Level , we
create one new sub-window per€ N elements, and delete
it when its timestamp becomes N +€ N. Once a sub-win-
dow is created, M G agorithm with parameter€/ (£ +1)
aways runs over this window and updates the synopss
with every new arriva until the window expires.

When a new data eement arrives, we ingert it into
al levels. Ineach levd , the newest dement is processed
in the light of agorithm described in section 2. 1.

When answering the frequency queries for n< N,
firgt , we calculate k=/ log€ rﬂ. Then, within kth level ,
we find the sub-window QW whose timestamp exceeds or
equas nandiscloses to n. Last, we output the synops's
of QW.

3.2 The Analysis of the Second Algorithm

Thearem 2 Once the sketch of the most recent N
eements has been congructed, agorithm described in
section 3. 1 adlowse-gpproxi mate frequency counts to be
computed over the most recent n(n< N) dements. Usng
O(L/€%log N) gace, it provides at most 1/€ + 2 cand-
date dements and does not make false negatives. Fur-
ther , it guarantees that (fe-€n) <fe< fe.

Prod  The sketch is mantained inl log€ N) 1+ 1
level's, each of whichindudes 1/€ +1 sub-windows. Fur-
ther , each sub-window needs O(L/€) space. S, we need
O(L/€%log N) space for storing sketch.

When answering frequency queries over the most re-
cent n(n< N) eements, we find sub-window QW with
timesamp T whichislarger thanor equa to nandisdo-
®g to ninleve k=l logén]. o, n> T- 2“and n<
T. Obvioudy, (1/€)2“ ' < n. Acoording to MG dgo-
rithm, we cause no false negatives if we guarantee that
EM(ZE+]) T<En

When T = n, there are no fa s negatives.

When T> n, without loss of generdity , we assume
T= W'+ v, v<2* umus be larger than or
equal to 1/ ; otherwise, (1/€)2 * > n For u, there are
two cases: u<l/e +2; u=1/E +2.

ff uissmalerthan 1/e +2,€/ (2 +1) T <€/ (Z +
1) ((Le)2<t +24 = 2% Obvioudy,eEn > 2% *,
Hence,€/ (2 +1) T <&n Consequently, when Tis
smaller than (1/€) 2% * + 2", dgorithm described in sec-
tion 3.1 does not generate fal se negatives.

If uislarger than or equa to 1/€ +2, (1/€)2* * +
2< T, thenweget 0 < 2T - Z2“- 2. Consequent-
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ly,€/ (2 +1) T<€(T- 2. Inaddtion, n > (T- 2.
S, when Tislarger thanor equa to (1/€)2 * +2*  no
false negatives are generated by agorithm described in
section 3. 1.

In concluson, agorithm described in section 3. 1
does not generate fa se negatives.

Because the parameter of MG agorithm over sub-
window is et to€/ (£ +1) , © there are a most 1/€ +2
cand date e ements to be output.

According to the MG dgorithm, (fe-€n) < fe<
fe.

When a new dement arrives, it will be inserted into
al sub-windows. Hence, dgorithm described in section
3.1 requires O(L/elog N) amortized procesing time per
element.

The query timeis O(log(1/€)) .

4 Experiments

Thefigures are shown in Fgs. 1-6.
We experiments with data stream that follows Zipf
digtribution. Inour experiments, the Zipf parameter zis

st to 0.9. All experimentsare carriedout onal.6 GHz
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Pentium V procesor running Windows Server.

Hraly, wecarry out experimentsto survey the per-
formances of Algorithm described in section 2. 1 and Al-
gorithm described in section 3. 1.

Acoording to Fg.1 and FHg. 3, we can draw a con-
clugon that the numbers of dementsoutput by our ago-
rithms are independent of the 9zeof diding window. The
number of output data in agorithm described in section
2.1 fluctuates between 0 and 1/€ + 1 while the number
of dementsoutput by agorithm described in section 3.1
fluctuates between 0 and /€ + 2. Moreover , our ago-
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Fig.6 The comparissn d memary codt between Algarithm de-
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rithmsare more likely to output more ements as€ de-
creases. From FHg.2 and Fg.4, we can cond ude that the
memory cost of agorithm described in section 2. 1 keeps
deady in despite of the increment of diding window’ s
gze while the memory cost of agorithm described in sec-
tion 3. 1 kegpsincreadng trend as the diding window’ s
gzeincreases. It isobvious that the memory costs of a-
gorithm described in section 2. 1 and agorithm described
in section 3.1 areinfluenced by€ . Further, the smalere
is, the larger the memory costs of agorithm described in
section 2. 1 and agorithm described in section 3.1 are.

Lagt , we compare the performances of agorithm de-
<ribed in section 2.1 and Arasu’ s agorithm!® .

Acoording to Fg. 5, which depicts the comparison
of the number of output data between a gorithm descri bed
in section 2.1 and Arasu’ s agorithm, it is obvious that
Arasu’ s agorithm outputs more elements than 1/ while
agorithm described in section 2.1 outputsat most 1 +1/
€ dements. FHgure 6 reved's the comparion of memory
c0st between agorithm described in section 2.1 and Arar
su' sagorithm. Arasu’ s agorithm utilizes more memory
than agorithm described in section 2.1 for fixede . Fur-
ther , as€ decreases, the memory cost of agorithm de-
scribed in section 2. 1 increases while the memory cost of
Arasu’ s agorithm keeps nor-decreasng trend. The norr
decreasng trend is caused by thefact that in Arasu’ sd-
gorithm arbitrary€ is tranformed to€' such that 1/€" is
the power of 2 and€’ does not exceede .

5 Conclusion

In thispaper , we present two a gorithmsfor compu-
ting frequency countsin diding window over data stream.
Thefirst agorithm outputs at most 1/€ + 1 elements
using O(1/€*) sace. Above dl , the ace complexity
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keeps invariable despite the increment of diding
window’ s 9ze. Once the sketch is constructed for diding
window with dze N, the second adgorithm outputs at
most /€ + 2 dementsfor thefrequency queriesover the
most recent n(n< N) eements.

Though the dataset output by our agorithmincl udes
al frequent itemsin diding window , it includes many d-
ements that do not belong to frequent items. In the fu-
ture, we will analyss the probahility of fase postives.
Another work isthat depending on the distribution of dar
ta stream, we will adjust our agorithm dynamicaly to
generate more accurate dataset. Relating to our work,
the top-k query in diding window is an open problem.
The gudying of data sreamisinitsinfancy , many work
need to be done.
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