
Fast Snippet Generation Based On CPU-GPU Hybrid System

Ding Liu, Ruixuan Li*, Xiwu Gu, Kunmei Wen, Heng He, Guoqiang Gao
Intelligent and Distributed Computing Laboratory, School of Computer Science and Technology

Huazhong University of Science and Technology
Wuhan 430074, Hubei, P. R. China

E-mail: ldhust@smail.hust.edu.cn, {rxli, guxiwu, kmwen}@hust.edu.cn, {henghe, ggq}@smail.hust.edu.cn
* Corresponding author

Abstract—As an important part of searching result
presentation, query-biased document snippet generation has
become a popular method of search engines that makes the
result list more informative to users. Generating a single
snippet is a lightweight task. However, it will be a heavy
workload to generate multiple snippets of multiple
documents as the search engines need to process large
amount of queries per second, and each result list usually
contains several snippets. To deal with this heavy workload,
we propose a new high-performance snippet generation
approach based on CPU-GPU hybrid system. Our main
contribution of this paper is to present a parallel processing
stream for large-scale snippet generation tasks using GPU.
We adopt a sliding document segmentation method in our
approach which costs more computing resources but can
avoid the common defect that the high relevant fragment
may be cut off. The experimental results show that our
approach gains a speedup of nearly 6 times in average
process time compared with the baseline approach-
Highlighter.

Keywords: query-biased snippet generation; graphics
processing unit; CPU-GPU hybrid system; parallel processing
stream; sliding document segmentation

I. INTRODUCTION
Search engines have become the main way for users to

locate and get effective information from the large-scale
data collections. The modern search engines not only
present the title, links and URL of a document, but also
provide users with the document summary, which is called
snippet in this paper. The snippet consists of one or more
fragments which are extracted from the source document.
Through this snippet, the query users can make a judgment
of the relevance between the document and the query
words.

There are several snippet generation approaches, which
can be divided into two categories: one is query
independent, and the other one is query-biased method.
Query-biased approach consists of one or more document
fragments which are associated with query. Compared to
the former one, the query-biased snippet can provide user
more meaningful information for them to make better
decisions about which results are worthy of attention and
which could be ignored. Almost all the modern search
engines employ query-biased snippet generation approach.

Modern search engines usually have millions of daily
visitations or even more, and each query may need to

generate 10 or more snippets. As the search engines should
generate different snippets for the same document with
different queries, they cannot just cache and reuse the
snippets based on the documents. That is, the snippet
generation sub-system of search engines will consume
considerable system resources. In a CPU derived system,
mass of snippet generation tasks could be accomplished by
using large number of CPU circles. However, this kind of
system does not scale well and has limited computational
and economical efficiency.

There are three main steps for snippet generation tasks.
First, we need to segment the document into several
fragments. The traditional segmentation methods which
segment the texts in a truncation way have a common
defect that the highly relevant fragment may be cut off,
and it will lead to low snippet precision. Although solving
this problem will cause high computational complexity,
we believe that the emerging high-performance devices
can provide some new way of solution. In our work, we
propose a sliding document segmentation method which
can avoid the truncation problem and achieve a preferable
performance. Second, relevant fragments (with respect to
the query) within the document should be chosen and
ranked. This is referred to the “sentence selection”
problem. The key issue of the problem is quantification of
the relevance between the fragments and the query. This
operation is called “scoring”. We adopt a method of
scoring based on vector space model (VSM) to compute
the score of the relevance. The final step is to sort the
fragments and construct the output snippets.

Generating a single snippet from a document-query
pair is a lightweight task, but the number of this kind of
task is extremely large in a search engine system.
However, we find that the instructions of these tasks are
nearly the same. Moreover, there is no interfering between
the executions of any two tasks. That is, it is a typical
single instruction multiple data (SIMD) paradigm. The
common method is to use multiple CPUs with parallel
process, but the efficiency of process is limited.
Considering these features of snippet generation, we try to
improve the performance and economical efficiency by
using efficient parallelization method. In this paper, we
proposed to use graphics processing unit (GPU) to solve
this problem.

As the core graphic processor in the computer system,
GPU has been developed into a highly parallelizable,
multi-threading and multi-core processor. Originally, GPU

2011 IEEE 17th International Conference on Parallel and Distributed Systems

1521-9097/11 $26.00 © 2011 IEEE

DOI 10.1109/ICPADS.2011.63

252

is designed for graphics applications. However, in fact,
there are many non-graphical applications are also
accelerated by GPU technology, such as signal processing,
engineering simulation, and mathematical biology.
Compared with the common method of using CPU, GPU
can achieve a higher efficiency for snippet generation,
because the scale of a single job is quite small, and the
number of jobs is quite huge. It is more suitable for GPU
process cluster to carry out this kind of tasks.

In this paper, we propose a CPU-GPU hybrid system,
in which we design a process stream for snippet generation
application of search engines. First, we analyze the
computing characteristics of the snippet generation process
using GPU. Then based on the analysis we design a cluster
of data structures for the process which are suitable for the
computing environment of GPU. As the response time is a
key consideration for search engines, we employ three
procedures to process the snippet generation based on the
characteristics of the CPU-GPU hybrid system, and design
a pipeline system for stream processing which can achieve
a preferable response time.

To verify the effectiveness of our approach, we carry
out a set of experiments to test the performance of the
proposed system. First, we test the performance and
applicability of the system to find out the internal and
external performance indicators, mainly including
throughput, response time, and processing time cost by
each task. We present the bottlenecks and our targeted
optimization measures. Second, we do some comparison
experiments with baseline to test the performance and
economical efficiency. We use a well-known snippet
generation implementation in Lucene as the baseline,
which is a famous project of Apache Software Foundation,
and compare our approach with it to demonstrate the
performance and economical advantage of our approach.
Third, we carry out quality test experiments to illustrate
that our approach can achieve a preferable snippet
precision.

The rest of this paper is organized as follows. Section
II presents the related work which mainly includes the
snippet generation methods and general purpose
computing on GPU. Section III discusses our snippet
generation approach based on sliding document
segmentation. Section IV shows how to use GPU to
accelerate snippet generation. Experimental studies are
presented in Section V. Section VI draws a conclusion.

II. RELATED WORK
The snippet generation has been addressed by many

researchers since it is quite important for search engines.
Kupiec, Pedersen and Chen [1] proposed a binary Naive
Bayes classifier to solve the problem of fragment
selection. However, this method was just designed for the
kind of snippets that are generated without user query. It
could be used to generate static snippets, which was
namely query-independent approach. Considering the
connection between documents and user query cannot be
reflected by static snippet, Tombros and Sanderson [2]
proposed a query-biased snippet generation method. The
experimental results showed that, comparing with query-

independent snippet, the query-biased snippet had
advantages in both precision and recall. Meanwhile, users
did not need to check the documents, such as webpages,
and they would be able to judge the relevance of the
documents and the query. After that, many scholars had
accessed a series of achievements in this field with the vast
majority query-independent methods. However, the
snippet sub-engines of most of the large-scale search
engines are query-biased. In this paper, we only focus on
query-biased snippet generation.

Query-biased snippet generation approaches can be
divided into two main branches. The most common
approach is document-based, which splits a document into
several fragments, and then calculates the relevance
between the query terms and the fragments according to
the features of each fragment. The fragments with high
relevance are selected to construct the snippet as the output
[2]. Highlighter is the snippet generation component of
Lucene. It is an implementation of document-based
method [3] that was widely used in enterprise search
engine applications. However, there are two defects in this
approach.

� It adopts a serial computational model and this may
lead to low efficiency.

� The high relevant fragment may be cut off and will
cause lower snippet precision.

Clarke and Cormack [4, 5] proposed another kind of
query-biased approach called index-based method, and it
was optimized by Gabriel Manolach [6]. The main idea of
index-based method is to use the hit and position
information of inverted index to calculate the most
relevant fragment offsets.

Comparing with the query-independent snippet
generation method, the query-biased snippet generation
needs more computing resources, and it is more difficult to
achieve high efficient cache. Therefore, there are many
researches trying to improve its efficiency. A well-known
method proposed by Turpin [7] uses a document
compression method and makes a great improvement of
efficiency in time and space. However, this method does
not improve the performance of fragment selection process
which is the key task. In order to accelerate this process,
Manolach [6] proposed an improved index-based approach
and can achieve a better performance in fragment
selection. However, the index-based approach has
recursive characteristic which means it is difficult to be
converted to a parallel computing model. Therefore, in this
paper, we adopt the document-based approach.

On the other hand, GPU vendors have started to offer
better support for general-purpose computation on GPU
[10]. In the field of information retrieval, some existing
researches try to improve performance by using GPU. An
important subject is using GPU for the inverted index
related process. Ujaldon and Saltz [11] converted the
process of retrieval into the pixel and texture process, and
handled it through DirectX interface with GPU. Finally,
they obtained an acceleration ratio up to 400%. Ding and
He [12] applied Tesla GPU system of NVIDIA to

253

information retrieval and got an acceleration ratio during
the retrieval process which is 2.37 times faster than before.

An increasing number of researchers are trying to
using GPU for information retrieval to improve
computational efficiency. However, to the best of our
knowledge, there is no research trying to improve the
efficiency of snippet generation of search engine by using
GPU.

III. SNIPPET GENERATION APPROACH BASED ON SLIDING
DOCUMENT SEGMENTATION

A. Sliding Document Segmentation
Common document-based approaches divide the

document into fragments in the first step [2, 3].
Considering that there is a linear relationship between the
number of fragments and the computational complexity.
To ensure necessary performance, the common
approaches adopt truncation segmentation to split
document. However, there will be a problem that the high
relevant fragments may be cut off. Consider the following
situation: a document has been parsed into a term vector:
�� � ����	
 ���
 ���
 ��

 ���
 ��	�� . Then, we split this
document by a truncation method and get two fragments:
����	 � ����	
 ���
 ���
 � , ����� � ����

 ���
 ��	
 � . If
there is a user query which can be expressed as a term
vector: �� � ����
 ��
� , we can find that �� � ����	
and �� � �����. In fact, the most relevant fragment has
been cut off in the segmentation operation.

In order to solve this problem, we propose a sliding
segmentation method that split a document by a sliding
way. Sliding segmentation method can ensure that the
high relevant fragments will not be cut off. However, in
this way, the size of fragment set is much larger than the
truncation way. In the former case, there will be �� � � �
�� fragments created by the sliding method, while the
number of truncation way is ���.

However, based on the belief that the number of terms
which both occur in the document and query is much less
than the length of the document, we believe that a large
portion of fragments generated by the sliding method do
not contain any query term. Therefore, in order to reduce
the complexity, we can filter out the useless fragments
before calculating the relevance scores.

B. Fragment Selection
After segmenting the document, we should decide

which fragments need to be selected to construct the
snippet, which determines the quality of snippet. Most of
the existing approach [13, 14, 15] use the features of
fragments to compute the final score.

In this work, we consider a fragment as a small
document and the score of a fragment is the relevance
between the small document and the query. To estimate
the score, we present a model based on vector space model
(VSM) [16] with the combination of fragment features.
Given a query � and a document �, the score function is:

���� ��
 �� � �������
 �� ! "��#����

! $ �%�� &' �� ! &�%����
()*+ (,- .

! "��#���� ���

where �������
 �� is the occurrence number of the terms
of � in the document �, "��#���� means the weight of �
in the source document. �%���&'��� is the frequency of the
term / in fragment �, which means how many times the
term / appears in � . &�%��� is the inverse document
frequency of term � which is a default weight factor.
"��#���� is an extension regulatory factor that is used to
specify the weight of term �. When search engines or the
searchers want to specify a different weight to the terms
of a certain query, this factor will be used.

IV. ACCLERATE WITH GPU

A. Serial and Parallel Snippet Generation Algorithm
For a given document � and a query � , the serial

algorithm can be described as follows.
In the input step, a document 0 should be expressed

as two vectors. One is a term’s identity vector:
 0123456789
 � �3456:8�8/	�
 3456:8�8/��
 ; 3456:8�8/<��
where � �=&����,� is the identification of term in the
position i. The other is an IDF vector:

���>�%? � �&�%���	�
 &�%�����
 ; &�%���-��
where &�%���,� means the IDF value of term in the
position i. The query � is also expressed as two vectors.
One is the identity vector of a term:
 �@ �A� �=>�?
 � �� �=&��B�	��
 � �=&��B����
 ; � �=&��B�+���
which is similar to the ���� �=>�? . The other is:
 �@ �AC��#�?

 � �"��#��B�	�
 "��#��B���
 ; "��#��B�+��
where "��#��B�,� indicates the boost factor of term in the
position i. The D&�? here is a 0/1 vector which indicates
the hits of document 0 with query E . When
���� �=>�?, F �@ �A� �=>�?, �D&�?�can be assigned
as the value 1. Otherwise, �D&�?,=0. In a search engine,
the snippet generation is to process the search results. In
the search step, the search engine has already got hits
information of the result documents. Thus, we assume
that D&�? is an input but not an intermediate in the
algorithm.

In the second step, the document will be split into
fragment set �GHI by the sliding method. If there are n
terms in a document, the length of the set will be �' �
J � �� in the condition that the maximal length of
fragment is J . The fragments that do not contain any
query term in �GHI will be filtered out. This step needs
D&�? . Then, we can use the scoring expression to
calculate all the scores of fragments in �GHI. In the last,
we can sort the scores and choose the top fragments to
construct a snippet with a certain structure as output.

To parallelize the serial algorithm, we should find out
the parallelizable part (s). As there is noninterference with
each other among fragment scoring tasks, the process of
computing the fragment scores can be parallelized. It is

254

Figure 1. The executing flow of a single document-query pair task in

CPU-GPU hybrid system

sensible that the process scoring of all fragments can be
divided into smaller execution units. These units can be
sent to many process units to execute. The Amdahl’s law
indicates that a parallel algorithm can obtain speedup ratio
compared with the serial version as follows.

��K� � K
� � �K � ��% �����������������������������L�

where � is the speedup ratio, K is the number of processing
units, and % indicates the proportion of serial parts in the
parallel algorithm. This law states that the speedup ratio
can be up to ��% when K M N.

Theoretically, in our algorithm, the factor % depends
on the time cost by the following steps: initialization,
filtering, task distribution, synchronization, sorting of
scores and result outputting. These steps are hard to be
parallelized.

B. Parallel Processing Stream Using GPU
In this section we will describe the parallel processing

stream for batch document-query pairs.
GPU has its own arithmetic logic units (ALUs),

controllers, memory and internal bus. However, as a
peripheral, it must run on the host in the current system
architecture. In a CPU-GPU hybrid system, GPU is used
for parallel computing tasks, while CPU is used for the
management, scheduling and input/output tasks. In this
system, the data and instruction interactions between CPU
and GPU are accomplished through the system bus. The
processors inside GPU communicate with each other by
the global memory, share memory and device bus.

We first introduce a single document-query pair task in
this hybrid system, and find out the existing problem.
Figure 1 shows the status of host, system bus and GPU in
a task of single document-query pair. Although the scoring
task of all the fragments has been paralleled in GPU, but
only one of the three parts of the hybrid system, including
host, system bus and GPU, is in working state while others
are waiting. Therefore, there is a considerable waste of
time in this algorithm.

Figure 2. Pipeline architecture of processing stream in CPU-GPU

hybrid system, where P1 is preprocessing, P2 is transferring and scoring,
and P3 is sorting and outputting

To solve this problem, we design a pipeline system,
which transforms the above process into three procedures.

Preprocessing. Firstly, the host gets the input data
which contains a certain number of document-query pairs.
In the next step, it splits the documents into fragment sets,
and then filters out the irrelevance fragments. These three
steps are all processed in CPU and host memory. We
combine them to a procedure called preprocessing.

Transferring and scoring. A GPU device can only be
used by a single host process at the same time.
Transferring input data from host to GPU and transferring
OPQRS back from GPU to host rely on the system bus.
Therefore, we need to consider GPU device and the
system bus as the critical resources. We combine the
following three steps into a procedure called transferring
and scoring: transferring 0 , E , T:/9 , URVW to GPU;
scoring in GPU; transferring OPQRS back to host memory.

Sorting and outputting. Finally, the host will take the
tasks that sort the score set and construct snippets as
output. These steps will be considered as a procedure
called sorting and outputting.

Based on the above abstraction, we present a pipeline
architecture for CPU-GPU hybrid system, as shown in
Figure 2. The preprocessing is handled by a host process
unit, which is called Host_Proc1. The transferring and
scoring procedure is handled by the system bus (with CPU
instructions) and GPU, which is called Host_Proc2_GPU.
The sorting and outputting procedure is handled by a host
process unit called Host_Proc3.

In Figure 2, the process unit is a batch of document-
query pairs, and the granularity of process unit is very
important to the efficiency. In the section of experiments,
we will present the influence of different granularities on
the throughput and response time.

V. EXPERIMENTS
In this section we will evaluate our approach in

performance, economic efficiency and quality, and
compare it with the base-line.

All of our experiments in subsection A, B ran on a
machine with an Intel Core2-Duo processors (2.2 GHz and
1 MB cache each) and 4 GB of main memory; and the
GPU device is NVIDIA GTX200. All the codes are
implemented in C++ and CUDA, which is an SDK for
NVIDIA GPU, and compiled by NVCC, which is an
integrated complier for C++ and CUDA. We took a data

255

0 10 20 30 40

0

5

10

15

20

25

30

35

40

th
ou

gh
pu

t (
pa

irs
/m

s)

number of pairs per unit
0 10 20 30 40

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

re
sp

on
se

 ti
m

e
(m

s)

number of pairs per unit

(a) Throughput (b) Response time

Figure 3. Throughput and response time under different load levels

set containing 3,000,000 document-query pairs and
generated every snippet constituting three fragments with
respect to each pair. The corpus was selected from Reuters
Corpus English Language 2006, 2007 and 2008. The
queries were selected from 2006 TREC efficiency topics.

A. Granularity of Process Unit
The granularity of process unit indicates the maximum

number of document-query pairs, which are contained in a
process unit. This is a major factor that influences the
performance of the processing stream. As it determines the
time cost by the transferring and scoring procedure, it will
bring a great impact on whether the processing stream can
flow smoothly or not. We mainly tested the throughput
and response time in a various process unit granularities,
and the test result was shown in Figure 3. In this test, we
kept the queue of waiting tasks full, which contained the
tasks to be processed, so that the throughput would not be
influenced by input.

Figure 3(a) shows that the throughput of the system
varies with different unit size. From this figure we can find
that the throughput of the system is low when the number
of process unit is small. This is because the GPU resources
cannot be effectively utilized, and the time is wasted on
waiting and communications between host and GPU. With
the increase of the unit size, the throughput also rises. It
means that, with the growth of unit size, the GPU
resources can be utilized more effectively. However, we
can see the throughput dropping down when the unit size
is more than 15. The reason is that, when the unit size goes
beyond the optimum value, a large-size process unit will
cost more time in GPU, while the host must spend more
time on waiting.

Figure 3(b) shows the response time of a snippet
generation task. We can see that the response time
increases with the growth of the unit size. This is because
the larger unit size will cost more time in the transferring
and scoring procedure. However, the slope of the curve
becomes larger and tends to be constant. The reason is that,
when the process unit size is small, time is mostly
consumed in data transferring step, and when the unit size
becomes large enough, the response time will have an
approximate linear increase with the unit size. The process
time of sorting step that has linear relationship with the
unit size will account for the majority of the response time.

We adopt 15 as the value of granularity. Because our
main purpose is to improve the throughput of system and
the throughput achieves maximum while the response time
in this granularity is also preferable.

B. Performance and Applicability Analysis
Compared with a serial approach, there are many steps

added in our approach, including data distribution and
transmission, interaction within and between the
processing units. These additional parts will affect the
efficiency of the system, especially when the system is
under low workload. In order to find out the applicable
conditions of our approach, we tested the system
efficiency by measuring the time consuming of a
document-query pair, response time on different load
levels and throughput of the system on different workload.

Figure 4 shows the result of the test, from which we
can find that when the workload is on a low level, the
system is running with low efficiency. For example, when
there are only 2 pairs inputted per second, the time that
spends on generating a snippet is about 250 microseconds.
This result mainly thanks to the internal feature of our
approach. As mentioned above, the minimum process unit
of our approach is a batch of document-query pairs, and in
this test we use 15 as the size of process unit. When the
workload is in a low level, for example, when there are
only 5 document-query pairs inputted to the processing
stream in a millisecond, the response time is about 0.5
milliseconds which we can find in the Figure 4(b). It
means that the transferring and scoring procedure, which is
handled by the GPU and system bus, can process a unit in
about 0.5 milliseconds. Actually, it also means that the
number of document-query pairs filled into a process unit
is less than 5, and the process unit cannot be fully filled.
When the system is running in this condition, the time cost
in the scoring part is less than the situation that when the
process unit can be filled fully. Nevertheless, the
transferring part consumed roughly the same time. We can
find that, when the workload is 30 pairs per millisecond,
the time cost by a whole procedure is about 0.6
milliseconds, which is similar to the former situation that
only 5 pairs inputted in a single millisecond. Therefore, the
time cost to process a single pair using our approach has a
wide disparity among different workloads. Compared with
working on a high workload, the ratio of time that spent on
the transferring parts will be much higher when our approach

256

0 10 20 30 40 50
0

50

100

150

200

250
tim

e
co

st
 p

er
 p

ai
r (

us
)

load level (pairs/ms)

0 10 20 30 40 50
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

re
sp

on
se

 ti
m

e
(m

s)

load level (pairs/ms)

0 10 20 30 40 50
0

10

20

30

40

50

th
ro

ug
hp

ut
 (p

ai
rs

/m
s)

load level (pairs/ms)

 (a) Time consuming of a pair (b) Response time measurement (c) Throughput measurement
Figure 4. Performance and applicability efficiency under different workload levels

running on a low level workload. As a result, the
efficiency in this situation will be much lower. As the
workload level increases, the efficiency becomes higher.
When the load level becomes up to 15 pairs per
millisecond, the process unit can be fully filled and the
system efficiency gradually turns to be stabilized. The
reason is that every process unit is fully filled and the ratio
of time that spent on the transferring parts can achieve
maximum value.

We can find in Figure 4 (b) that, when the workload is
lower than 20 pairs per millisecond, with the increase of
workload, the response time increases slightly. This is due
to the system has a larger load margin. However, when the
workload increases up to 30 pairs or higher, the response
time will increase quickly, since the workload has reached
the top capacity limit of the process stream.

In order to find out the bottleneck of our approach, we
carried out a profiling test of the system. Transferring and
scoring procedure which processed by the system bus and
GPU is the key point of the processing stream. The
transferring process has two steps. One is to transfer
inputting data to the GPU global memory, and the data is
consisted of document, query, fragment segment tag and
other auxiliary data. The other step is to transfer the result
score of each fragment back to the host. Obviously, the
former part will cost more time as the size of data is much
larger than the other one. We combine the two steps of
data transferring processes as communication operation.
This operation costs a part of process time and the rest
time is consumed by the scoring operation, which should

5 10 15 20 25 30 35 40
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ra
tio

 o
f t

ra
ns

fe
rri

ng

workload (pairs/ms)

 improved communication strategy
 communication strategy before improvement

Figure 5. Comparison of time cost ratio of transferring between two

methods

calculate score value of thousands of fragments. We
measure the time cost of each part by using a profiler tool.

Figure 5 shows the results, in which the red columns
indicate the ratio of time cost by communicate operation.
Obviously, a lower ratio of time cost by transferring
operation will lead to a more efficiency transferring and
scoring procedure, as the process of real value is scoring.
In the figure, we can find that, when the workload is in a
low level, the ratio of time cost by communication is more
than 50%. Time is mostly wasted, and the system is
working in low efficiency in this case. With the growth of
workload, this ratio decline and keep stable after it reached
the point of 11.6%. In this condition, the throughput of
system is about 20 pairs per millisecond. Through further
analysis, we find that there is still room for improvement,
as GPU has a large global memory. However, as each
process unit only has no more than 15 document-query
pairs, the size of data transferred to GPU is small. As a
result, the utilization of GPU memory is low and the
communication frequency is in a high level, which will
cause time waste. In order to improve the performance in
this situation, we adopt an improved strategy that, when
the Host_Proc2-GPU process picks tasks from the queue
of waiting tasks, it transfers the needed data of all the tasks
in the queue to the GPU global memory, instead of the
strategy that only transfers the needed data of tasks which
form the next process unit. In this way, the frequency of
data transferring will drop significantly.

In Figure 5, the green columns indicate the ratio of
time cost by communication operation of the improved
strategy. We can find that, when the workload level is low,
the ratios of both strategies are nearly the same. Each time
the Host_Proc2-GPU process picks tasks from the queue,
the number of tasks in the queue is not larger or even
smaller then the size of the process unit, so that the gap of
frequency of communication between the two strategy is
small. However, as the workload increases, this gap
becomes larger. Finally, the ratio of time cost by
communication of improved strategy is about 5.6% when
the system is fully loaded, and the throughput in this
situation is about 30 pairs per millisecond (see Figure 4(c)).

Figure 4 (c) shows the throughput of our approach on
different workloads. From the figure we can find that,
when the workload is 30 pairs per millisecond, the speed
of input stream and output stream are the same. When the
workload increases to more than 30, the throughput turns

257

0 10 20 30 40 50
0

8

16

24

32

 GPU running our approach
 Highlighter
 CPU running our approach

th
ro

ug
hp

ut
 (p

ai
rs

/m
s)

load level (pairs/ms)

0 10 20 30 40 50
0

100

200

300

400

500

600 GPU running our approach
 Highlighter
 CPU running our approach

tim
e

co
st

 p
er

 p
ai

r (
us

)

load level (pairs/ms)

0 4 8 12 16 20 24 28 32

0.3

0.6

0.9

1.2

1.5

1.8
 GPU running our approach
 Highlighter
 CPU running our approach

re
sp

on
se

 ti
m

e
(m

s)

load level (pairs/ms)

 (a) Throughput Measurement (b) Time consuming of a pair (c) Response time measurement
Figure 6. Comparison tests in performance with the baseline

TABLE I. F1 MEASURE RESULT

 GTX250 + Intel Core2
Due(x2)

Intel Core2 Due
(x2)

Intel i5 2300
(x4) AMD Opteron8 6134 (x6)

Speedup 5.8 1.8 3.7 5.5
Price($) 107+77 77 190 507

to be stable. In this condition, the throughput does not
appear to reduce significantly. Because of the design of
our architecture, the excess workload can be hidden by the
process unit queue, and will not influence the transferring
and scoring procedure which is the key procedure of the
processing stream.

From above analysis, we can draw a conclusion that
our approach is applicable under a high workload level.
Compared with working in a low level, the time consumed
for generating a single snippet will be shorter and the ratio
of time cost by communication operation will be smaller.
As a result, the system can achieve high efficiency.
However, the response time will increase rapidly when the
load level is too high, which means the system load should
not exceed the full load threshold.

C. Performance and Economical Efficiency Comparison
In order to verify the performance of our approach, we

carried out comparison tests. We measured three items
which contained throughput, average time consuming of a
document-query pair and response time. We contrasted our
approach running on GPU, our approach running on CPU
with single thread and Highlighter with single thread under
a variety of load levels.

Figure 6 shows the results of these tests, from which
we can see our approach running on CPU got a throughput
less than Highlighter about 30%. This is because the
sentence selection process of the former is more complex.
However, our approach running on GPU got a throughput
that is about 6 times more than Highlighter when the
processing stream is under full load. The time consuming
test indicates that the processing stream is running at full
capacity, each snippet generation task would cost about 32
microseconds by using GPU while the Highlighter must
spend 215 microseconds to do the same task. Therefore,
we got a speedup of 6 by adopting our approach running in
GPU. In the response time test, we got the result that the
load level is lower than 30 pairs per millisecond. There
would be little change in the response time by GPU. On
the other side, as the throughput capabilities of Highlighter

and our approach running on CPU are limited. When the
input load level is exceeded, the response time will
increase rapidly. When the load is in a high level, our
approach running in CPU-GPU hybrid system can get a
much lower response time. This result is attributed to the
larger throughput of processing stream and the finite
length of the task queue in the implementation.

To demonstrate the advantage of our approach on
economical efficiency, we also carried out a comparison
experiment between our approach running in CPU-GPU
hybrid system and Highlighter running on different CPUs.
We used three CPUs with 2, 4, 6 cores to run the same
algorithm using 2, 4, 6 threads, and recorded the maximum
throughput of each test.

Table I shows the results of the tests, in which each
column indicates the throughput speedup of the different
devices comparing with the throughput of Highlighter
running in a single thread, and the average price of the
devices in market. From the table we can find that,
compared with the mainstream devices, to get similar
speedups, our approach running in the hybrid system cost
less than the multi-core CPUs.

D. Snippet Quality
Although our primary focus in this work is on

efficiency, we briefly describe our test on the
effectiveness of our approach and Highlighter. As there is
no benchmark for evaluating the snippet quality, we
performed a user study to evaluate the effectiveness of
our approach contrastively. In this test, we took 160
document-query pairs and also chose 3 fragments from
each pair. Ten graduate students who were not involved in
our research were invited to participate in this study.

The most commonly way to measure retrieval
effectiveness called F1 measure, which is the harmonic
mean of precision and recall. It balances recall and
precision in a way that gives them equal weight [17,18]:
U	 � �X5Y��5 � Y� , where 5 � Z��Z � [� as recall and
Y � Z��Z � \� as precision; here Z indicates the number

258

TABLE II. F1 MEASURE RESULT

of fragments both selected by user and the testing
approach; [indicates the number of fragments in user
result list, but does not appear in the testing approach; \
indicates the number of fragments in the result list of the
testing approach, but not in the user result list. Table II
shows the result of this test. We can find that our
approach can get better snippet quality compared with
Highlighter.

In summary, experimental evaluation shows that our
snippet generation approach is applicable under a high
workload level. Meaning while, compared with
Highlighter, it can get a speedup of more than 6times in
average process time, and achieve better snippet quality.

VI. CONCLUSION

In this research, we proposed to import GPU as a
parallel coprocessor to deal with the large-scale query-
biased document snippet generation tasks. Firstly, we
pointed out the common problem that high relevant
fragments may be cut off by the truncation segmentation.
We adopted a sliding document segmentation that can
avoid this defect. Then we presented a fragment selection
method which adopted an improved SVM-based
expression to score the relevance between fragment and
query. Finally, we constructed a CPU-GPU hybrid system
in which the GPU is used for parallel computing tasks
while the CPU is responsible for the management,
scheduling and input/output tasks. We classified the
snippet generation process into three procedures according
to the hybrid system architecture, and designed three-level
processing stream based on this abstraction. The
experimental results showed that our approach can gain a
higher efficiency on high workload level compared to the
baseline Highlighter and can also achieve a slightly better
snippet quality.

ACKNOWLEDGEMENTS
We thank Dr. Zhao Zhang at Iowa State University, Dr.

Zhichun Zhu at University of Illinois at Chicago and Dr.
Weijun Xiao at University of Minnesota for their valuable
advices and insightful comments. This work is partially
supported by National Natural Science Foundation of
China under grants 61173170 and 60873225, National
High Technology Research and Development Program of
China under grant 2007AA01Z403, Natural Science
Foundation of Hubei Province under grant 2009CDB298,
Wuhan Youth Science and Technology Chenguang
Program under grant 200950431171, Open Foundation of
State Key Laboratory of Software Engineering under grant
SKLSE20080718, Innovation Fund of Huazhong
University of Science and Technology under grants
2011TS135 and 2010MS068, and Graduate Innovation

Fund of Huazhong University of Science and Technology
under grant HF-08-03-2011-210.

REFERENCES
[1] J. Kupiec, J. Pedersen, and F. Chen “A trainable document

summarizer,” in Proc. 18th Ann. Intl. ACM SIGIR Conf. on
Research and Development in Information Retrieval, pp.68–73,
1995.

[2] Anastasios Tombros and Mark Sanderson, “Advantages of query
biased summaries in information retrieval,” in 21st Conference on
Research and Development in Information Retrieval (SIGIR'98),
pp.2-10, 1998.

[3] D. Cutting. Lucene. http://lucene.apache.org.

[4] C. L. A. Clarke and G. V. Cormack, “Shortest-substring retrieval
and ranking,” in ACM Trans. Inf. Syst., pp.44-78, 2000.

[5] C. L. A. Clarke, G. V. Cormack, and F. J. Burkowski, “An algebra
for structured text search and a framework for its implementation,”
in The Computer Journal, pp.43-56, 1995.

[6] Holger Bast, Marjan Celikik and Gabriel Manolache “Efficient
Index-Based Snippet Generation,” in WWW'09, April 20-24, 2009.

[7] Andrew Turpin, Yohannes Tsegay, David Hawking, and Hugh E.
Williams Fast generation of result snippets in web search,” in
30th Conference on Research and Development in Information
Retrieval (SIGIR'07), pp.127-134, 2007.

[8] Donald Metzler and Tapas Kanungo, “Machine Learned Sentence
Selection Strategies for Query-Biased Summarization,” in SIGIR
2008 Workshop on Learning to Rank for Information Retrieval
(LR4IR 2008), pp.136-148, 2008.

[9] Ramakrishna Varadarajan and Vagelis Hristidis “A system for
query-specific document summarization,” in 15th Conference on
Information and Knowledge Management (CIKM'06), pp.622-631,
2006.

[10] General-Purpose Computation Using Graphics Hardware
(GPGPU). http://www.gpgpu.org.

[11] Manuel Ujaldon and Joel Saltz, “The GPU as an indirection engine
for a fast information retrieval,” in Int. J. Electronic Business, Vol.
3, Nos. 3/4, 2005.

[12] Shuai Ding, Jinru He, Hao Yan and Torsten Suel, “Using Graphics
Processors for High-Performance IR Query Processing,” in WWW
2008, April 21–25, 2008.

[13] J. Goldstein, M. Kantrowitz, V. Mittal, and J. Carbonell,
“Summarizing text documents: sentence selection and evaluation
metrics,” in SIGIR99, pp.121–128, 1999.

[14] H.P. Luhn, “The automatic creation of literature abstracts,” in IBM
Journal, pp.159–165, April 1958.

[15] T. Sakai and K. Sparck-Jones, “Generic summaries for indexing in
information retrieval,” in SIGIR01, pp.190–198, 2001.

[16] Stephen Robertson, Hugo Zaragoza, “The Probabilistic Relevance
Model: BM25 and beyond,” in the 30th Annual International ACM
SIGIR Conference 23-27 July 2007.

[17] Yiming Yang, “An Evaluation of Statistical Approaches to Text
Categorization”, in INFORMATION RETRIEVAL, Volume
1, pp.69-90, 1999.

[18] C. J. van Rijsbergen. Information Retireval. Butterworths, London,
1979.

] ^ _`
our approach 0.48 0.44 0.459
Highlighter 0.46 0.43 0.444

259

