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Abstract—As an important part of searching result 
presentation, query-biased document snippet generation has 
become a popular method of search engines that makes the 
result list more informative to users. Generating a single 
snippet is a lightweight task. However, it will be a heavy 
workload to generate multiple snippets of multiple 
documents as the search engines need to process large 
amount of queries per second, and each result list usually 
contains several snippets. To deal with this heavy workload, 
we propose a new high-performance snippet generation 
approach based on CPU-GPU hybrid system. Our main 
contribution of this paper is to present a parallel processing 
stream for large-scale snippet generation tasks using GPU. 
We adopt a sliding document segmentation method in our 
approach which costs more computing resources but can 
avoid the common defect that the high relevant fragment 
may be cut off. The experimental results show that our 
approach gains a speedup of nearly 6 times in average 
process time compared with the baseline approach-
Highlighter. 

Keywords: query-biased snippet generation; graphics 
processing unit; CPU-GPU hybrid system; parallel processing 
stream; sliding document segmentation 

I.  INTRODUCTION 
Search engines have become the main way for users to 

locate and get effective information from the large-scale 
data collections. The modern search engines not only 
present the title, links and URL of a document, but also 
provide users with the document summary, which is called 
snippet in this paper. The snippet consists of one or more 
fragments which are extracted from the source document. 
Through this snippet, the query users can make a judgment 
of the relevance between the document and the query 
words.  

There are several snippet generation approaches, which 
can be divided into two categories: one is query 
independent, and the other one is query-biased method. 
Query-biased approach consists of one or more document 
fragments which are associated with query. Compared to 
the former one, the query-biased snippet can provide user 
more meaningful information for them to make better 
decisions about which results are worthy of attention and 
which could be ignored. Almost all the modern search 
engines employ query-biased snippet generation approach. 

Modern search engines usually have millions of daily 
visitations or even more, and each query may need to 

generate 10 or more snippets. As the search engines should 
generate different snippets for the same document with 
different queries, they cannot just cache and reuse the 
snippets based on the documents. That is, the snippet 
generation sub-system of search engines will consume 
considerable system resources. In a CPU derived system, 
mass of snippet generation tasks could be accomplished by 
using large number of CPU circles. However, this kind of 
system does not scale well and has limited computational 
and economical efficiency. 

There are three main steps for snippet generation tasks. 
First, we need to segment the document into several 
fragments. The traditional segmentation methods which 
segment the texts in a truncation way have a common 
defect that the highly relevant fragment may be cut off, 
and it will lead to low snippet precision. Although solving 
this problem will cause high computational complexity, 
we believe that the emerging high-performance devices 
can provide some new way of solution. In our work, we 
propose a sliding document segmentation method which 
can avoid the truncation problem and achieve a preferable 
performance. Second, relevant fragments (with respect to 
the query) within the document should be chosen and 
ranked. This is referred to the “sentence selection” 
problem. The key issue of the problem is quantification of 
the relevance between the fragments and the query. This 
operation is called “scoring”. We adopt a method of 
scoring based on vector space model (VSM) to compute 
the score of the relevance. The final step is to sort the 
fragments and construct the output snippets. 

Generating a single snippet from a document-query 
pair is a lightweight task, but the number of this kind of 
task is extremely large in a search engine system. 
However, we find that the instructions of these tasks are 
nearly the same. Moreover, there is no interfering between 
the executions of any two tasks. That is, it is a typical 
single instruction multiple data (SIMD) paradigm. The 
common method is to use multiple CPUs with parallel 
process, but the efficiency of process is limited. 
Considering these features of snippet generation, we try to 
improve the performance and economical efficiency by 
using efficient parallelization method. In this paper, we 
proposed to use graphics processing unit (GPU) to solve 
this problem.  

As the core graphic processor in the computer system, 
GPU has been developed into a highly parallelizable, 
multi-threading and multi-core processor. Originally, GPU 
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is designed for graphics applications. However, in fact, 
there are many non-graphical applications are also 
accelerated by GPU technology, such as signal processing, 
engineering simulation, and mathematical biology. 
Compared with the common method of using CPU, GPU 
can achieve a higher efficiency for snippet generation, 
because the scale of a single job is quite small, and the 
number of jobs is quite huge. It is more suitable for GPU 
process cluster to carry out this kind of tasks. 

In this paper, we propose a CPU-GPU hybrid system, 
in which we design a process stream for snippet generation 
application of search engines. First, we analyze the 
computing characteristics of the snippet generation process 
using GPU. Then based on the analysis we design a cluster 
of data structures for the process which are suitable for the 
computing environment of GPU. As the response time is a 
key consideration for search engines, we employ three 
procedures to process the snippet generation based on the 
characteristics of the CPU-GPU hybrid system, and design 
a pipeline system for stream processing which can achieve 
a preferable response time.  

To verify the effectiveness of our approach, we carry 
out a set of experiments to test the performance of the 
proposed system. First, we test the performance and 
applicability of the system to find out the internal and 
external performance indicators, mainly including 
throughput, response time, and processing time cost by 
each task. We present the bottlenecks and our targeted 
optimization measures. Second, we do some comparison 
experiments with baseline to test the performance and 
economical efficiency. We use a well-known snippet 
generation implementation in Lucene as the baseline, 
which is a famous project of Apache Software Foundation, 
and compare our approach with it to demonstrate the 
performance and economical advantage of our approach. 
Third, we carry out quality test experiments to illustrate 
that our approach can achieve a preferable snippet 
precision. 

The rest of this paper is organized as follows. Section 
II presents the related work which mainly includes the 
snippet generation methods and general purpose 
computing on GPU. Section III discusses our snippet 
generation approach based on sliding document 
segmentation. Section IV shows how to use GPU to 
accelerate snippet generation. Experimental studies are 
presented in Section V. Section VI draws a conclusion. 

II. RELATED WORK 
The snippet generation has been addressed by many 

researchers since it is quite important for search engines. 
Kupiec, Pedersen and Chen [1] proposed a binary Naive 
Bayes classifier to solve the problem of fragment 
selection. However, this method was just designed for the 
kind of snippets that are generated without user query. It 
could be used to generate static snippets, which was 
namely query-independent approach. Considering the 
connection between documents and user query cannot be 
reflected by static snippet, Tombros and Sanderson [2] 
proposed a query-biased snippet generation method. The 
experimental results showed that, comparing with query-

independent snippet, the query-biased snippet had 
advantages in both precision and recall. Meanwhile, users 
did not need to check the documents, such as webpages, 
and they would be able to judge the relevance of the 
documents and the query. After that, many scholars had 
accessed a series of achievements in this field with the vast 
majority query-independent methods. However, the 
snippet sub-engines of most of the large-scale search 
engines are query-biased. In this paper, we only focus on 
query-biased snippet generation. 

Query-biased snippet generation approaches can be 
divided into two main branches. The most common 
approach is document-based, which splits a document into 
several fragments, and then calculates the relevance 
between the query terms and the fragments according to 
the features of each fragment. The fragments with high 
relevance are selected to construct the snippet as the output 
[2]. Highlighter is the snippet generation component of 
Lucene. It is an implementation of document-based 
method [3] that was widely used in enterprise search 
engine applications. However, there are two defects in this 
approach. 

� It adopts a serial computational model and this may 
lead to low efficiency.  

� The high relevant fragment may be cut off and will 
cause lower snippet precision.  

Clarke and Cormack [4, 5] proposed another kind of 
query-biased approach called index-based method, and it 
was optimized by Gabriel Manolach [6]. The main idea of 
index-based method is to use the hit and position 
information of inverted index to calculate the most 
relevant fragment offsets. 

Comparing with the query-independent snippet 
generation method, the query-biased snippet generation 
needs more computing resources, and it is more difficult to 
achieve high efficient cache. Therefore, there are many 
researches trying to improve its efficiency. A well-known 
method proposed by Turpin [7] uses a document 
compression method and makes a great improvement of 
efficiency in time and space. However, this method does 
not improve the performance of fragment selection process 
which is the key task. In order to accelerate this process, 
Manolach [6] proposed an improved index-based approach 
and can achieve a better performance in fragment 
selection. However, the index-based approach has 
recursive characteristic which means it is difficult to be 
converted to a parallel computing model. Therefore, in this 
paper, we adopt the document-based approach. 

On the other hand, GPU vendors have started to offer 
better support for general-purpose computation on GPU 
[10]. In the field of information retrieval, some existing 
researches try to improve performance by using GPU. An 
important subject is using GPU for the inverted index 
related process. Ujaldon and Saltz [11] converted the 
process of retrieval into the pixel and texture process, and 
handled it through DirectX interface with GPU. Finally, 
they obtained an acceleration ratio up to 400%. Ding and 
He [12] applied Tesla GPU system of NVIDIA to 
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information retrieval and got an acceleration ratio during 
the retrieval process which is 2.37 times faster than before.  

An increasing number of researchers are trying to 
using GPU for information retrieval to improve 
computational efficiency. However, to the best of our 
knowledge, there is no research trying to improve the 
efficiency of snippet generation of search engine by using 
GPU. 

 

III. SNIPPET GENERATION APPROACH BASED ON SLIDING 
DOCUMENT SEGMENTATION 

A. Sliding Document Segmentation 
Common document-based approaches divide the 

document into fragments in the first step [2, 3]. 
Considering that there is a linear relationship between the 
number of fragments and the computational complexity. 
To ensure necessary performance, the common 
approaches adopt truncation segmentation to split 
document. However, there will be a problem that the high 
relevant fragments may be cut off. Consider the following 
situation: a document has been parsed into a term vector: 
�� � ����	
 ���
 ���
 ��

 ���
 ��	�� . Then, we split this 
document by a truncation method and get two fragments: 
����	 � ����	
 ���
 ���
 � , ����� � ����

 ���
 ��	
 � . If 
there is a user query which can be expressed as a term 
vector: �� � ����
 ��
� , we can find that �� � ����	 
and �� � �����. In fact, the most relevant fragment has 
been cut off in the segmentation operation.  

In order to solve this problem, we propose a sliding 
segmentation method that split a document by a sliding 
way. Sliding segmentation method can ensure that the 
high relevant fragments will not be cut off. However, in 
this way, the size of fragment set is much larger than the 
truncation way. In the former case, there will be �� � � �
��  fragments created by the sliding method, while the 
number of truncation way is ���.  

However, based on the belief that the number of terms 
which both occur in the document and query is much less 
than the length of the document, we believe that a large 
portion of fragments generated by the sliding method do 
not contain any query term. Therefore, in order to reduce 
the complexity, we can filter out the useless fragments 
before calculating the relevance scores. 

B. Fragment Selection 
After segmenting the document, we should decide 

which fragments need to be selected to construct the 
snippet, which determines the quality of snippet. Most of 
the existing approach [13, 14, 15] use the features of 
fragments to compute the final score. 

In this work, we consider a fragment as a small 
document and the score of a fragment is the relevance 
between the small document and the query. To estimate 
the score, we present a model based on vector space model 
(VSM) [16] with the combination of fragment features. 
Given a query � and a document �, the score function is: 

 

���� ��
 �� � �������
 �� ! "��#����

! $ �%�� &' �� ! &�%����
()*+ ( ,- .

! "��#���� ��� 

where �������
 �� is the occurrence number of the terms 
of � in the document �, "��#���� means the weight of � 
in the source document. �%���&'��� is the frequency of the 
term / in fragment �, which means how many times the 
term /  appears in � . &�%���  is the inverse document 
frequency of term �  which is a default weight factor. 
"��#���� is an extension regulatory factor that is used to 
specify the weight of term �. When search engines or the 
searchers want to specify a different weight to the terms 
of a certain query, this factor will be used. 

IV. ACCLERATE WITH GPU 

A. Serial and Parallel Snippet Generation Algorithm 
For a given document �  and a query � , the serial 

algorithm can be described as follows.  
In the input step, a document 0 should be expressed 

as two vectors. One is a term’s identity vector: 
      0123456789 
          � �3456:8�8/	�
 3456:8�8/��
 ; 3456:8�8/<�� 
where � �=&����,�  is the identification of term in the 
position i. The other is an IDF vector: 

���>�%? � �&�%���	�
 &�%�����
 ; &�%���-�� 
where &�%���,�  means the IDF value of term in the 
position i. The query � is also expressed as two vectors. 
One is the identity vector of a term: 
      �@ �A� �=>�? 
         � �� �=&��B�	��
 � �=&��B����
 ; � �=&��B�+��� 
which is similar to the ���� �=>�? . The other is: 
      �@ �AC��#�? 

 � �"��#��B�	�
 "��#��B���
 ; "��#��B�+�� 
where "��#��B�,� indicates the boost factor of term in the 
position i. The D&�? here is a 0/1 vector which indicates 
the hits of document 0  with query E . When 
���� �=>�?, F �@ �A� �=>�?, �D&�?�can be assigned 
as the value 1. Otherwise, �D&�?,=0. In a search engine, 
the snippet generation is to process the search results. In 
the search step, the search engine has already got hits 
information of the result documents. Thus, we assume 
that D&�?  is an input but not an intermediate in the 
algorithm. 

In the second step, the document will be split into 
fragment set �GHI by the sliding method. If there are n 
terms in a document, the length of the set will be �' �
J � ��  in the condition that the maximal length of 
fragment is J . The fragments that do not contain any 
query term in �GHI will be filtered out. This step needs 
D&�? . Then, we can use the scoring expression to 
calculate all the scores of fragments in �GHI. In the last, 
we can sort the scores and choose the top fragments to 
construct a snippet with a certain structure as output. 

To parallelize the serial algorithm, we should find out 
the parallelizable part (s). As there is noninterference with 
each other among fragment scoring tasks, the process of 
computing the fragment scores can be parallelized. It is  
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Figure 1.  The executing flow of a single document-query pair task in 

CPU-GPU hybrid system 

sensible that the process scoring of all fragments can be 
divided into smaller execution units. These units can be 
sent to many process units to execute. The Amdahl’s law 
indicates that a parallel algorithm can obtain speedup ratio 
compared with the serial version as follows. 

��K� � K
� � �K � ��% �����������������������������L� 

where � is the speedup ratio, K is the number of processing 
units, and % indicates the proportion of serial parts in the 
parallel algorithm. This law states that the speedup ratio 
can be up to ��% when K M N. 

Theoretically, in our algorithm, the factor %  depends 
on the time cost by the following steps: initialization, 
filtering, task distribution, synchronization, sorting of 
scores and result outputting. These steps are hard to be 
parallelized. 

B. Parallel Processing Stream Using GPU 
In this section we will describe the parallel processing 

stream for batch document-query pairs.  
GPU has its own arithmetic logic units (ALUs), 

controllers, memory and internal bus. However, as a 
peripheral, it must run on the host in the current system 
architecture. In a CPU-GPU hybrid system, GPU is used 
for parallel computing tasks, while CPU is used for the 
management, scheduling and input/output tasks. In this 
system, the data and instruction interactions between CPU 
and GPU are accomplished through the system bus. The 
processors inside GPU communicate with each other by 
the global memory, share memory and device bus. 

We first introduce a single document-query pair task in 
this hybrid system, and find out the existing problem. 
Figure 1 shows the status of host, system bus and GPU in 
a task of single document-query pair. Although the scoring 
task of all the fragments has been paralleled in GPU, but 
only one of the three parts of the hybrid system, including 
host, system bus and GPU, is in working state while others 
are waiting. Therefore, there is a considerable waste of 
time in this algorithm.  

 

 
Figure 2.  Pipeline architecture of processing stream in CPU-GPU 

hybrid system, where P1 is preprocessing, P2 is transferring and scoring, 
and P3 is sorting and outputting 

To solve this problem, we design a pipeline system, 
which transforms the above process into three procedures. 

Preprocessing. Firstly, the host gets the input data 
which contains a certain number of document-query pairs. 
In the next step, it splits the documents into fragment sets, 
and then filters out the irrelevance fragments. These three 
steps are all processed in CPU and host memory. We 
combine them to a procedure called preprocessing.  

Transferring and scoring. A GPU device can only be 
used by a single host process at the same time. 
Transferring input data from host to GPU and transferring 
OPQRS back from GPU to host rely on the system bus. 
Therefore, we need to consider GPU device and the 
system bus as the critical resources. We combine the 
following three steps into a procedure called transferring 
and scoring: transferring 0 , E , T:/9 , URVW  to GPU; 
scoring in GPU; transferring OPQRS back to host memory. 

Sorting and outputting. Finally, the host will take the 
tasks that sort the score set and construct snippets as 
output. These steps will be considered as a procedure 
called sorting and outputting.  

Based on the above abstraction, we present a pipeline 
architecture for CPU-GPU hybrid system, as shown in 
Figure 2. The preprocessing is handled by a host process 
unit, which is called Host_Proc1. The transferring and 
scoring procedure is handled by the system bus (with CPU 
instructions) and GPU, which is called Host_Proc2_GPU. 
The sorting and outputting procedure is handled by a host 
process unit called Host_Proc3.  

In Figure 2, the process unit is a batch of document-
query pairs, and the granularity of process unit is very 
important to the efficiency. In the section of experiments, 
we will present the influence of different granularities on 
the throughput and response time. 

V. EXPERIMENTS 
In this section we will evaluate our approach in 

performance, economic efficiency and quality, and 
compare it with the base-line. 

All of our experiments in subsection A, B ran on a 
machine with an Intel Core2-Duo processors (2.2 GHz and 
1 MB cache each) and 4 GB of main memory; and the 
GPU device is NVIDIA GTX200. All the codes are 
implemented in C++ and CUDA, which is an SDK for 
NVIDIA GPU, and compiled by NVCC, which is an 
integrated complier for C++ and CUDA.  We took a data 
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(a) Throughput                                                  (b) Response time 

Figure 3.  Throughput and response time under different load levels 

set containing 3,000,000 document-query pairs and 
generated every snippet constituting three fragments with 
respect to each pair. The corpus was selected from Reuters 
Corpus English Language 2006, 2007 and 2008. The 
queries were selected from 2006 TREC efficiency topics. 

A. Granularity of Process Unit 
The granularity of process unit indicates the maximum 

number of document-query pairs, which are contained in a 
process unit. This is a major factor that influences the 
performance of the processing stream. As it determines the 
time cost by the transferring and scoring procedure, it will 
bring a great impact on whether the processing stream can 
flow smoothly or not. We mainly tested the throughput 
and response time in a various process unit granularities, 
and the test result was shown in Figure 3. In this test, we 
kept the queue of waiting tasks full, which contained the 
tasks to be processed, so that the throughput would not be 
influenced by input. 

Figure 3(a) shows that the throughput of the system 
varies with different unit size. From this figure we can find 
that the throughput of the system is low when the number 
of process unit is small. This is because the GPU resources 
cannot be effectively utilized, and the time is wasted on 
waiting and communications between host and GPU. With 
the increase of the unit size, the throughput also rises. It 
means that, with the growth of unit size, the GPU 
resources can be utilized more effectively. However, we 
can see the throughput dropping down when the unit size 
is more than 15. The reason is that, when the unit size goes 
beyond the optimum value, a large-size process unit will 
cost more time in GPU, while the host must spend more 
time on waiting.  

Figure 3(b) shows the response time of a snippet 
generation task. We can see that the response time 
increases with the growth of the unit size. This is because 
the larger unit size will cost more time in the transferring 
and scoring procedure. However, the slope of the curve 
becomes larger and tends to be constant. The reason is that, 
when the process unit size is small, time is mostly 
consumed in data transferring step, and when the unit size 
becomes large enough, the response time will have an 
approximate linear increase with the unit size. The process 
time of sorting step that has linear relationship with the 
unit size will account for the majority of the response time. 

We adopt 15 as the value of granularity. Because our 
main purpose is to improve the throughput of system and 
the throughput achieves maximum while the response time 
in this granularity is also preferable. 

B. Performance and Applicability Analysis 
Compared with a serial approach, there are many steps 

added in our approach, including data distribution and 
transmission, interaction within and between the 
processing units. These additional parts will affect the 
efficiency of the system, especially when the system is 
under low workload. In order to find out the applicable 
conditions of our approach, we tested the system 
efficiency by measuring the time consuming of a 
document-query pair, response time on different load 
levels and throughput of the system on different workload.  

Figure 4 shows the result of the test, from which we 
can find that when the workload is on a low level, the 
system is running with low efficiency. For example, when 
there are only 2 pairs inputted per second, the time that 
spends on generating a snippet is about 250 microseconds. 
This result mainly thanks to the internal feature of our 
approach. As mentioned above, the minimum process unit 
of our approach is a batch of document-query pairs, and in 
this test we use 15 as the size of process unit. When the 
workload is in a low level, for example, when there are 
only 5 document-query pairs inputted to the processing 
stream in a millisecond, the response time is about 0.5 
milliseconds which we can find in the Figure 4(b). It 
means that the transferring and scoring procedure, which is 
handled by the GPU and system bus, can process a unit in 
about 0.5 milliseconds. Actually, it also means that the 
number of document-query pairs filled into a process unit 
is less than 5, and the process unit cannot be fully filled. 
When the system is running in this condition, the time cost 
in the scoring part is less than the situation that when the 
process unit can be filled fully. Nevertheless, the 
transferring part consumed roughly the same time. We can 
find that, when the workload is 30 pairs per millisecond, 
the time cost by a whole procedure is about 0.6 
milliseconds, which is similar to the former situation that 
only 5 pairs inputted in a single millisecond. Therefore, the 
time cost to process a single pair using our approach has a 
wide disparity among different workloads. Compared with 
working on a high workload, the ratio of time that spent on 
the transferring parts will be much higher when our approach 
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 (a) Time consuming of a pair                            (b) Response time measurement                                      (c) Throughput measurement 
Figure 4.  Performance and applicability efficiency under different workload levels 

running on a low level workload. As a result, the 
efficiency in this situation will be much lower. As the 
workload level increases, the efficiency becomes higher. 
When the load level becomes up to 15 pairs per 
millisecond, the process unit can be fully filled and the 
system efficiency gradually turns to be stabilized. The 
reason is that every process unit is fully filled and the ratio 
of time that spent on the transferring parts can achieve 
maximum value. 

We can find in Figure 4 (b) that, when the workload is 
lower than 20 pairs per millisecond, with the increase of 
workload, the response time increases slightly. This is due 
to the system has a larger load margin. However, when the 
workload increases up to 30 pairs or higher, the response 
time will increase quickly, since the workload has reached 
the top capacity limit of the process stream. 

In order to find out the bottleneck of our approach, we 
carried out a profiling test of the system. Transferring and 
scoring procedure which processed by the system bus and 
GPU is the key point of the processing stream. The 
transferring process has two steps. One is to transfer 
inputting data to the GPU global memory, and the data is 
consisted of document, query, fragment segment tag and 
other auxiliary data. The other step is to transfer the result 
score of each fragment back to the host. Obviously, the 
former part will cost more time as the size of data is much 
larger than the other one. We combine the two steps of 
data transferring processes as communication operation. 
This operation costs a part of process time and the rest 
time is consumed by the scoring operation, which should  
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Figure 5.  Comparison of time cost ratio of transferring between two 

methods 

calculate score value of thousands of fragments. We 
measure the time cost of each part by using a profiler tool. 

Figure 5 shows the results, in which the red columns 
indicate the ratio of time cost by communicate operation. 
Obviously, a lower ratio of time cost by transferring 
operation will lead to a more efficiency transferring and 
scoring procedure, as the process of real value is scoring. 
In the figure, we can find that, when the workload is in a 
low level, the ratio of time cost by communication is more 
than 50%. Time is mostly wasted, and the system is 
working in low efficiency in this case. With the growth of 
workload, this ratio decline and keep stable after it reached 
the point of 11.6%. In this condition, the throughput of 
system is about 20 pairs per millisecond. Through further 
analysis, we find that there is still room for improvement, 
as GPU has a large global memory. However, as each 
process unit only has no more than 15 document-query 
pairs, the size of data transferred to GPU is small. As a 
result, the utilization of GPU memory is low and the 
communication frequency is in a high level, which will 
cause time waste. In order to improve the performance in 
this situation, we adopt an improved strategy that, when 
the Host_Proc2-GPU process picks tasks from the queue 
of waiting tasks, it transfers the needed data of all the tasks 
in the queue to the GPU global memory, instead of the 
strategy that only transfers the needed data of tasks which 
form the next process unit. In this way, the frequency of 
data transferring will drop significantly.  

In Figure 5, the green columns indicate the ratio of 
time cost by communication operation of the improved 
strategy. We can find that, when the workload level is low, 
the ratios of both strategies are nearly the same. Each time 
the Host_Proc2-GPU process picks tasks from the queue, 
the number of tasks in the queue is not larger or even 
smaller then the size of the process unit, so that the gap of 
frequency of communication between the two strategy is 
small. However, as the workload increases, this gap 
becomes larger. Finally, the ratio of time cost by 
communication of improved strategy is about 5.6% when 
the system is fully loaded, and the throughput in this 
situation is about 30 pairs per millisecond (see Figure 4(c)). 

Figure 4 (c) shows the throughput of our approach on 
different workloads. From the figure we can find that, 
when the workload is 30 pairs per millisecond, the speed 
of input stream and output stream are the same. When the 
workload increases to more than 30, the throughput turns  
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    (a) Throughput Measurement                          (b) Time consuming of a pair                            (c) Response time measurement 
Figure 6.  Comparison tests in performance with the baseline 

TABLE I.  F1 MEASURE RESULT 

 GTX250 + Intel Core2 
Due(x2) 

Intel Core2 Due 
(x2) 

Intel i5 2300 
(x4) AMD Opteron8 6134 (x6) 

Speedup 5.8 1.8 3.7 5.5 
Price($) 107+77 77 190 507 

 
to be stable. In this condition, the throughput does not 
appear to reduce significantly. Because of the design of 
our architecture, the excess workload can be hidden by the 
process unit queue, and will not influence the transferring 
and scoring procedure which is the key procedure of the 
processing stream.  

From above analysis, we can draw a conclusion that 
our approach is applicable under a high workload level. 
Compared with working in a low level, the time consumed 
for generating a single snippet will be shorter and the ratio 
of time cost by communication operation will be smaller. 
As a result, the system can achieve high efficiency. 
However, the response time will increase rapidly when the 
load level is too high, which means the system load should 
not exceed the full load threshold. 

C. Performance and Economical Efficiency Comparison 
In order to verify the performance of our approach, we 

carried out comparison tests. We measured three items 
which contained throughput, average time consuming of a 
document-query pair and response time. We contrasted our 
approach running on GPU, our approach running on CPU 
with single thread and Highlighter with single thread under 
a variety of load levels.  

Figure 6 shows the results of these tests, from which 
we can see our approach running on CPU got a throughput 
less than Highlighter about 30%. This is because the 
sentence selection process of the former is more complex. 
However, our approach running on GPU got a throughput 
that is about 6 times more than Highlighter when the 
processing stream is under full load. The time consuming 
test indicates that the processing stream is running at full 
capacity, each snippet generation task would cost about 32 
microseconds by using GPU while the Highlighter must 
spend 215 microseconds to do the same task. Therefore, 
we got a speedup of 6 by adopting our approach running in 
GPU. In the response time test, we got the result that the 
load level is lower than 30 pairs per millisecond. There 
would be little change in the response time by GPU. On 
the other side, as the throughput capabilities of Highlighter 

and our approach running on CPU are limited. When the 
input load level is exceeded, the response time will 
increase rapidly. When the load is in a high level, our 
approach running in CPU-GPU hybrid system can get a 
much lower response time. This result is attributed to the 
larger throughput of processing stream and the finite 
length of the task queue in the implementation.  

To demonstrate the advantage of our approach on 
economical efficiency, we also carried out a comparison 
experiment between our approach running in CPU-GPU 
hybrid system and Highlighter running on different CPUs. 
We used three CPUs with 2, 4, 6 cores to run the same 
algorithm using 2, 4, 6 threads, and recorded the maximum 
throughput of each test.  

Table I shows the results of the tests, in which each 
column indicates the throughput speedup of the different 
devices comparing with the throughput of Highlighter 
running in a single thread, and the average price of the 
devices in market. From the table we can find that, 
compared with the mainstream devices, to get similar 
speedups, our approach running in the hybrid system cost 
less than the multi-core CPUs. 

D. Snippet Quality 
Although our primary focus in this work is on 

efficiency, we briefly describe our test on the 
effectiveness of our approach and Highlighter. As there is 
no benchmark for evaluating the snippet quality, we 
performed a user study to evaluate the effectiveness of 
our approach contrastively. In this test, we took 160 
document-query pairs and also chose 3 fragments from 
each pair. Ten graduate students who were not involved in 
our research were invited to participate in this study.  

The most commonly way to measure retrieval 
effectiveness called F1 measure, which is the harmonic 
mean of precision and recall. It balances recall and 
precision in a way that gives them equal weight [17,18]: 
U	 � �X5Y��5 � Y� , where 5 � Z��Z � [�  as recall and 
Y � Z��Z � \� as precision; here Z indicates the number  
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TABLE II.  F1 MEASURE RESULT 

 
of fragments both selected by user and the testing 
approach; [  indicates the number of fragments in user 
result list, but does not appear in the testing approach; \ 
indicates the number of fragments in the result list of the 
testing approach, but not in the user result list. Table II 
shows the result of this test. We can find that our 
approach can get better snippet quality compared with 
Highlighter. 

In summary, experimental evaluation shows that our 
snippet generation approach is applicable under a high 
workload level. Meaning while, compared with 
Highlighter, it can get a speedup of more than 6times in 
average process time, and achieve better snippet quality. 

VI. CONCLUSION 

In this research, we proposed to import GPU as a 
parallel coprocessor to deal with the large-scale query-
biased document snippet generation tasks. Firstly, we 
pointed out the common problem that high relevant 
fragments may be cut off by the truncation segmentation. 
We adopted a sliding document segmentation that can 
avoid this defect. Then we presented a fragment selection 
method which adopted an improved SVM-based 
expression to score the relevance between fragment and 
query. Finally, we constructed a CPU-GPU hybrid system 
in which the GPU is used for parallel computing tasks 
while the CPU is responsible for the management, 
scheduling and input/output tasks. We classified the 
snippet generation process into three procedures according 
to the hybrid system architecture, and designed three-level 
processing stream based on this abstraction. The 
experimental results showed that our approach can gain a 
higher efficiency on high workload level compared to the 
baseline Highlighter and can also achieve a slightly better 
snippet quality. 
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