
Artif Intell Rev
DOI 10.1007/s10462-011-9250-x

Incremental K-clique clustering in dynamic social
networks

Dongsheng Duan · Yuhua Li · Ruixuan Li ·
Zhengding Lu

© Springer Science+Business Media B.V. 2011

Abstract Clustering entities into dense parts is an important issue in social network anal-
ysis. Real social networks usually evolve over time and it remains a problem to efficiently
cluster dynamic social networks. In this paper, a dynamic social network is modeled as an
initial graph with an infinite change stream, called change stream model, which naturally
eliminates the parameter setting problem of snapshot graph model. Based on the change
stream model, the incremental version of a well known k-clique clustering problem is stud-
ied and incremental k-clique clustering algorithms are proposed based on local DFS (depth
first search) forest updating technique. It is theoretically proved that the proposed algorithms
outperform corresponding static ones and incremental spectral clustering algorithm in terms
of time complexity. The practical performances of our algorithms are extensively evaluated
and compared with the baseline algorithms on ENRON and DBLP datasets. Experimental
results show that incremental k-clique clustering algorithms are much more efficient than
corresponding static ones, and have no accumulating errors that incremental spectral clus-
tering algorithm has and can capture the evolving details of the clusters that snapshot graph
model based algorithms miss.

Keywords Incremental k-clique clustering · Dynamic social network ·
Change stream model

D. Duan · Y. Li (B) · R. Li · Z. Lu
Intelligent and Distributed Computing Lab, School of Computer Science and Technology, Huazhong
University of Science and Technology, 430074 Wuhan, People’s Republic of China
e-mail: idcliyuhua@hust.edu.cn

D. Duan
e-mail: duandongsheng@smail.hust.edu.cn

R. Li
e-mail: rxli@hust.edu.cn

Z. Lu
e-mail: zdlu@hust.edu.cn

123



D. Duan et al.

(a)

(b)

Fig. 1 The difference between evolutionary clustering and incremental clustering

1 Introduction

Clustering entities into dense parts can discover interesting groups in real or online social net-
works, such as amateurs with the same hobbies, friends with frequent contacts, scientists with
the same research area and words with the similar semantics (Palla et al. 2005). Real social
networks usually evolve over time. In the academic network, for example, new researchers
join via publishing their first papers and old ones withdraw due to retirement and they might
also change co-authorships during their research career. As another example, email is one
of the most primary tools for people to communicate with each other and the frequency of
email communications among people changes constantly. Clustering on the time-evolving
social networks remains an open problem. The state-of-the-art approach of clustering in a
dynamic fashion is evolutionary clustering (Chakrabarti et al. 2006). However, evolutionary
clustering is a snapshot graph model based algorithms, which has some inherent drawbacks
as follows.

Firstly, snapshot graph model separates the time into time-slices according to a predefined
time interval. Unfortunately, it is rather difficult for users to set a reasonable time interval.
On the contrary, incremental clustering tracks the dynamics of the social network in the
granularity of a small change, i.e. edge or node deletion or addition, rather than a time-slice,
thus eliminates the parameter setting problem of snapshot graph model.

Next, when the time interval is improperly specified, the evolving details of the clusters
in the dynamic social network might be missed by snapshot graph model. Figure 1a shows
the snapshot graph model, which computes a clustering result for each time-slice. However,
there may be a sequence of small changes from Gt to Gt+1. One possible such change
sequence is {12−, 13−, 45−, 14+, 25+, 35+}, where uv− represents deletion of edge uv

and uv+ represents addition of edge uv. Snapshot graph model regards the change sequence
as a whole such that it loses detailed dynamics of the clusters. On the contrary, incremental
clustering models the dynamics as a change stream as Fig. 1b shows, and it tracks the changes
sequentially and discovers interesting evolving details of the clusters.

Lastly, although snapshot graph model is a dynamic model, it reports the clustering re-
sult for each time-slice in a static fashion. Therefore, it has to re-compute the clustering
result whenever a new time-slice comes. When the change of clusters between continuous

123



Incremental K-clique clustering

time-slices is small, re-computation is completely unnecessary. In contrast, incremental clus-
tering updates the clusters according to a change sequence locally thus can save lots of
computational resources.

Motivated by the above comparisons, we study incremental clustering in dynamic social
networks. There are two non-trivial challenges to achieve this goal. The first one is the effi-
ciency problem, i.e. the algorithm should be conducted as fast as possible. The second one
is the accuracy problem, i.e. the updated clustering result should be consistent with that pro-
duced by static one. However, the first one is the common goal of an incremental approach,
and it is also the main focus of this paper. As for the second one, we study the incremental
version of one kind of clustering approach which produces consistent result from different
running, and K -clique clustering is a well known approach of such kind. Here, parameter k is
used to constraint the density of edges of intra-clusters. The larger the k value, the denser the
discovered clusters. Although setting different k values produces different clustering results,
the clusters are always fixed when the k is set to some particular value.

Moreover, k-clique clustering has some other superior properties. K -clique clustering
allows multiple cluster membership for nodes, which is always true for real social networks
in which one entity may belong to several clusters. K -clique cluster is a strong connected
part in which there are few cut-edges or cut-nodes whose removal will disjoin the cluster.
K -clique clustering always produces consistent clusters when k is specified so that there is
not any uncertainty in the clustering process.

Above all, incremental k-clique clustering problem in dynamic social networks is studied
in this paper. The main contributions are as follows.

– A dynamic social network is modeled as an initial graph with an infinite change stream,
called change stream model, which eliminates the parameter setting problem of snapshot
graph model.

– Incremental k-clique clustering problem is well defined and solved based on local DFS
(depth first search) forest updating. The proposed algorithms are theoretically superior
to the corresponding static algorithms and incremental spectral clustering in terms of the
time complexity.

– The performances of the proposed algorithms are extensively evaluated on real dynamic
social networks. Experimental results show that our algorithms outperform all the com-
pared algorithms in efficiency, and avoids the accumulating errors of incremental spectral
clustering and also can capture evolving details that snapshot graph model based algo-
rithms leave out.

The rest of the paper is organized as follows. Section 2 reviews the related works. Incremen-
tal k-clique clustering problem is formally defined in Sect. 3 and corresponding algorithms
are detailedly elaborated in Sect. 4. Section 5 analyzes the time complexity of the proposed
algorithms. Section 6 evaluates the efficiency and effectiveness of the proposed algorithms
through experiments on real dynamic social networks and we conclude this paper in Sect. 7.

2 Related works

In this section, related works about static clustering, dynamic clustering and incremental clus-
tering for social networks are reviewed. The works about k-clique clustering are discussed
at the end of this section.

123



D. Duan et al.

2.1 Static clustering

Clustering algorithms for static networks can be roughly categorized as measurement based
and probability model based methods. The most popular measurements are normalized cut
(Shi and Malik 1997) and modularity (Newman 2006). For measurement based approach,
clustering problem is to search clusters that optimize corresponding evaluation measure.
Due to the NP-Completeness of the measure optimization problem, heuristics (Girvan and
Newman 2002) and spectral approaches (von Luxburg 2007) are proposed to obtain approx-
imately optimal results. There are also large volume of probability model based clustering
approaches (Hofmann 1999; Cohn and Chang 2000; Airoldi et al. 2008; Yang et al. 2010).
Recently, clustering on heterogenous networks are studied (Sun et al. 2009). However, all the
above methods deal with static networks while incremental clustering can handle dynamic
ones. Most of the methods, except information theoretic clustering and k-clique clustering,
require pre-specified number of clusters.

2.2 Dynamic clustering

There are also large volume of works studying dynamic social network clustering. Chakrabarti
et al. (2006) put forward evolutionary clustering, in which two cost functions are presented,
sq and hq , which control the snapshot quality and historical quality of clustering results
respectively. Following the framework of evolutionary clustering, Chi et al. (2007); Lin
et al. (2009a); Bron and Kerbosch (2009) propose novel instantiated evolutionary solutions
for clustering dynamic networks. Many other works (Sun et al. 2007; Asur et al. 2007; Yang
et al. 2009; Greene et al. 2010; Tantipathananandh et al. 2007; Duan et al. 2009) study the
evolutionary process of clusters in dynamic social network. Recently, the community evolu-
tion problem is studied (Lin et al. 2009b; Tang et al. 2008; Sun et al. 2010) on heterogenous
networks, in which there are more than one types of entities and relationships. Overall speak-
ing, the above methods model dynamic networks as a sequence of snapshot graphs while we
regard the dynamics of networks as a change stream.

2.3 Incremental network clustering

There exist research literatures on incremental clustering for network data using techniques
other than k-clique clustering method. The techniques include spectral clustering (Ning et al.
2010) and minimum-cut tree based partitioning (Saha and Mitra 2006; Görke et al. 2009).
These clustering techniques require pre-specified number of clusters while k-clique cluster-
ing does not. Moreover, incremental spectral clustering has computational error while our
incremental k-clique clustering can be executed continuously and produces accurate cluster-
ing result along the change stream. As the experimental section shows, incremental k-clique
clustering algorithms can be executed much more efficiently than incremental spectral clus-
tering algorithm.

2.4 K -clique clustering

Comparing to hard clustering methods, k-clique clustering can detect overlapping clusters,
which becomes quite popular in the last few years. For k-clique clustering problem, Palla
et al. (2005) propose clique percolation method (CPM). It is based on the concept that the
internal edges of a community are likely to form cliques due to their high density. Derenyi
et al. (2005) study the percolation properties of k-cliques on random graphs when the edge

123



Incremental K-clique clustering

probability p varies. There are some works extending CPM to analyze the clustering of
weighted, directed and bipartite networks (Farkas et al. 2007; Lehmann et al. 2008). Du et al.
(2008) use bi-cliques as the main ingredients to detect communities in bipartite network.
Palla et al. (2007) develop a CPM based algorithm to quantify the social group evolution,
which allows to investigate the time dependence of overlapping communities and to uncover
basic relationships characterizing community evolution. However, the method still adopts
static CPM to perform k-clique clustering for each snapshot network. Overall, static k-clique
clustering has been widely studied and applied in practical social networks, such as co-
author network, communication network (Palla et al. 2007), word association network and
molecular-biological network (Palla et al. 2005).

Static k-clique clustering, i.e. CPM, is the basis of our study. The incremental version of
k-clique clustering is a very important issue for clustering dynamic networks but has been
largely ignored by previous works, inspired by which we systematically study incremental
k-clique clustering problem in this paper.

3 Problem definition

In this section, incremental k-clique clustering problem is defined and some necessary defi-
nitions and notations are formally presented.

Definition 1 (social network) A social network is formally defined as a graph G(V, E),
where node set V denotes entities in the social network and edge set E = {uv|u, v ∈ V }
denotes relationships between entities.

Definition 2 (k-clique) A k-clique is a complete subgraph with k nodes.

Definition 3 (k-clique cluster) A k-clique cluster is a union of all k-cliques that can be
reached from each other through a series of adjacent k-cliques (two k-cliques are adjacent to
each other if and only if they have k-1 common nodes).

Definition 4 (k-clique clustering) k-clique clustering is to compute all the k-clique clusters
P = {p|p is a k − clique cluster} in a graph G.

Definition 5 (dynamic social network) A dynamic social network is formally defined as an
initial graph G plus an infinite change stream c1, . . . , c∞, where each change ci has one of
the following types, edge deletion, node deletion, edge addition and node addition, which
are denoted as uv−, u−, uv + andu+ respectively.

For example, the left side of Fig. 2 illustrates some kinds of k-cliques. On the right side of
Fig. 2, 3-clique clusters of an artificial social network is shown. Nodes with the same color
form a 3-clique cluster and black nodes belong to more than one clusters.

Based on the definitions above, incremental k-clique clustering problem in dynamic social
networks is defined as Prob. 1.

Problem 1 (incremental k-clique clustering in dynamic social networks) Suppose G is the
current network and P is the k-clique clusters of G. When a change c in the change stream
is coming, how to locally update P such that it is the right k-clique clusters of the changed
network G ′ = G + c.

123



D. Duan et al.

Fig. 2 K-cliques and k-clique clusters

Algorithm 1 Local DFS Forest Updating
Input: graph G, DFS forest F and change c
Output: updated G and F
1: if type of c is edge deletion then
2: call TED(G, F, c.u, c.v)
3: if type of c is node deletion then
4: for all neighbors u of c.v in G do
5: call TED(G, F, u, c.v)
6: delete node c.v from G and F
7: if type of c is edge addition then
8: call TEA(G, F, c.u, c.v)
9: if type of c is node addition then
10: add node c.v into G and F
11: return updated G and F

4 Incremental K-clique clustering algorithms

Following the principle from specific to general, incremental 2-clique clustering is studied
first and then incremental k-clique clustering (k ≥ 3).

4.1 Incremental 2-clique clustering

Two-clique clusters are actually the connected components of a graph, which can be effi-
ciently solved by depth first search (DFS). The clustering result can be expressed by a DFS
forest F in which nodes from the same DFS tree form a cluster. Connected components can
also be represented by spanning trees which can be updated by using dynamic trees and
topology trees (Frederickson 1983). However, a spanning tree is not necessarily a legal DFS
tree but the contrary is right. DFS tree of a graph can be applied to many other applications
besides discovering connected components. In this paper, DFS tree is chosen to represent
connected components.

The main part of 2-clique clustering is to obtain DFS forest F of graph G. Thus, incre-
mental 2-clique clustering is converted to local DFS forest updating according to a given
change c. The overall framework of local DFS forest updating is outlined in Algorithm 1. In
this algorithm, TED(two-clique edge deletion) and TEA(two-clique edge addition) are two
primary ingredients.

It is worthy to point out that there are totally two types of edges in a simple graph with
respect to a DFS forest, i.e. forward edge and backward edge. Forward edges are the edges
in DFS forest F while backward edges are those in the graph G but not in the DFS forest
F . In addition, the two nodes adjacent to a backward edge must satisfy ancestor-descendant
relation.

123



Incremental K-clique clustering

(a) (b) (c)

Fig. 3 An example to show which ancestor should be selected

4.1.1 Two-clique edge deletion

It is obvious that deleting a backward edge does not make any effect to DFS forest because
backward edges are not in any DFS tree. Therefore, if the edge for deletion is a backward
edge, we just delete it from G and keep F unchanged.

When the deleted edge is a forward edge, the situation becomes slightly complicated. The
forward edge for deletion is supposed to be uv and u is the parent of v in F . Deleting uv

from F makes the subtree rooted at node v(denoted as subtree[v]) detached from the DFS
tree containing node v(denoted as tree[v]). However, whether subtree[v] is really detached
from tree[v] depends on whether there exist ancestors of v connecting to subtree[v] through
backward edges. If there is no such ancestor, then subtree[v] is truly detached from tree[v],
otherwise subtree[v] can be re-connected to tree[v] through a backward edge.

When there are many candidate ancestors of v connecting to subtree[v] through back-
ward edges, we arguably conclude that the nearest ancestor of v should be chosen, as it is
the only way to make the updated DFS tree legal. Figure 3 justifies why we should choose
the nearest ancestor.

Figure 3a is the original DFS tree. In this DFS tree, node v has two ancestors A and B
connecting to subtree[v] via backward edges e1 and e2 respectively. After deleting edge
uv, subtree[v] is detached from the DFS tree. However, subtree[v] can be re-connected to
the DFS tree through e1 or e2. If subtree[v] is re-connected to node A, the adjacent nodes
of edge e2 violate ancestor-descendant relation in Fig. 3b, thus the DFS tree becomes illegal.
If subtree[v] is re-connected to node B, e1 is still a legal backward edge as Fig. 3c shows.
Here, B is right the nearest candidate ancestor of v. Rigorously, the nearest candidate ances-
tor must be selected in this case, since if the further ancestors are selected there are always
illegal backward edges after the updating.

The above selected ancestor of node v is denoted as alt[v], which can be formally ex-
pressed as Eq. (1),

alt[v] =
{

arg max
u∈cand[v] order [u] if cand[v] �= ∅

v otherwise
(1)

where cand[v] is the candidate set of ancestors of v connecting to subtree[v] through back-
ward edges, order [u] is the DFS order of node u. Thus, alt[v] is the nearest ancestor of v

123



D. Duan et al.

Algorithm 2 TED
Input: graph G, forest F , node u and v

Output: updated G and F
1: delete uv from G
2: if uv is a forward edge then
3: if alt[v] = v then
4: detach subtree[v] from tree[v]
5: add subtree[v] to F
6: else
7: S← {alt[v]} ∪ {w|w ∈ subtree[v]}
8: t ← DF S(G(S))

9: for all child cld of root (t) do
10: connect cld to alt[v] as a child tree
11: return updated G and F

in cand[v]. Based on the definition of alt[v], we go on describing the details of deleting a
forward edge as following.

If alt[v] = v, then subtree[v] is really detached from tree[v]due to uv’s deletion, because
uv is the only edge or path connecting subtree[v] to tree[v]. In this case, subtree[v] is cut
from tree[v] and it is added to forest F as a new DFS tree. In practical applications, this kind
of edge deletion separates one large cluster into two small ones.

If alt[v] �= v, there are ancestors of v connected to subtree[v] via backward edges. In
this case, subtree[v] is not truly detached from tree[v] since there exist backward edges
through which we can re-connect subtree[v] to tree[v]. One of these backward edges is
between alt[v] and some node in subtree[v]. Because of the deletion of uv, the DFS order
of nodes in S = {alt[v]} ∪ {w|w ∈ subtree[v]} might change. Thus, DFS must be re-per-
formed on subgraph G(S) starting from node alt[v]. After DFS on G(S), the resultant DFS
tree is connected to the original DFS tree in the position of node alt[v]. The pseudo code of
algorithm TED is shown in Algorithm 2.

4.1.2 Two-clique edge addition

It is observed that there are totally three possible types of edges added to a graph, (1) back-
ward edge, (2) edge between two nodes violating ancestor-descendant relation in the same
DFS tree and (3) edge crossing two DFS trees.

For the addition of edge of type 1 (backward edge), it is obvious that the DFS forest F
keeps unchanged.

For the case of adding an edge of type 2, the added edge is supposed to be uv as Fig. 4
shows. The nearest common ancestor of u and v is node A. Due to the addition of edge uv, the
child tree of node A that contains node v (as the triangle area shows) can be directly reached
from node u when conducting DFS. In this case, DFS is re-conducted on G(tr iangle) (sub-
graph of G induced by node set in the triangle) starting from node v and then the resultant
DFS tree is connected to node u. The new DFS order of nodes in the triangle is indicated by
the red arrow. Notice that edge AC becomes a backward edge after the change thus is deleted
from the tree. The right side of Fig. 4 is the updated DFS tree after adding edge uv to G.

When adding an edge of type 3, Fig. 5a shows a general case. Due to the addition of edge
uv, DFS tree t (tree[u]) and r (tree[v]) is combined into a larger DFS tree. The combina-
tion operation is conducted as follows, (1) DFS on graph G(r) starting from node v and (2)
connect the resultant DFS tree to node u.

123



Incremental K-clique clustering

Fig. 4 Adding an edge of type 2

(a) (b)

Fig. 5 Adding an edge of type 3

The new DFS orders of nodes in r are also exhibited by the red arrow. In this example tree
r is connected to tree t , however tree t can also be connected to tree r because u and v are
symmetric. In practical implementation, the smaller DFS tree is connected to the larger one
to reduce the size of graph requiring DFS. In Fig. 5a, tree r(si ze = 3) is smaller than tree
t (si ze = 4), so r is connected to t according to the above rule. In addition, Fig. 5b shows a
special case, where node v is exactly the root of tree r . In the special case, tree r is directly
connected to tree t as a child of node u and it is not necessary to conduct DFS on r . More
details about the algorithm TEA is listed in Algorithm 3.

Algorithm 3 TEA
Input: graph G, forest F , nodes u and v

Output: updated G and F
1: add uv into G
2: if tree[u]=tree[v] then
3: w←nearest common ancestor of u and v

4: if w �= u and w �= v then
5: t ← w’s child tree that contains v

6: detach t from tree[u]
7: R← {x |x ∈ t}
8: DFS on G(R) starting at node v

9: connect the new DFS tree to node u
10: else
11: t ← tree[v]
12: R← {x |x ∈ t}
13: remove t from F
14: DFS on G(R) starting at node v

15: connect the new DFS tree to node u
16: return updated G and F

123



D. Duan et al.

Algorithm 4 Incremental K-clique Clustering
Input: G, C, H, F, P, k and c
Output: updated G, C, H, F and P
1: if type of c is edge deletion then
2: call KED(G, C, H, F, P, k, c.u, c.v)
3: if type of c is node deletion then
4: for all neighbor u of c.v in G do
5: call KED(G, C, H, F, P, k, u, c.v)
6: delete node c.v from G and F
7: if type of c is edge addition then
8: call KEA(G, C, H, F, P, k, c.u, c.v)
9: if type of c is node addition then
10: add node c.v into G

4.2 General incremental K-clique clustering

In the previous subsection, local DFS forest updating algorithm is proposed for incremental
2-clique clustering problem. However, 2-clique clustering is the most special case of k-clique
clustering. The general incremental k-clique clustering (k ≥ 3) is discussed in this subsection.

As a preliminary of incremental k-clique clustering, the static k-clique clustering algo-
rithm (Everett and Borgatti 1998) is reviewed first. The procedures of k-clique clustering
are as follows. (1) Find all the maximal cliques C = {C1, . . . , Cn} with size ≥ k in G. (2)
Denote each discovered clique by a clique node and connect two cliques through an edge if
they have at least k−1 common nodes in G. These clique nodes and edges constitute a clique
graph H . (3) Perform DFS on H to discover all the connected components of H in terms
of the DFS forest F . According to the DFS forest F of clique graph H and the discovered
cliques C , the clustering result P can be obtained trivially.

Unfortunately, maximal cliques discovery is a well known NP-Complete problem (Abello
et al. 2002). There are extensive works studying maximal cliques discovery problem which is
beyond the scope of this paper. We just adopt the algorithm developed by Bron and Kerbosch
(1973), which is one of the fastest algorithms. Based on the static k-clique clustering, the
overall framework of incremental k-clique clustering algorithm is outlined in Algorithm 4.

It can be seen that the clustering result P depends on DFS forest F and maximal clique set
C , thus the main task of incremental k-clique clustering is to update F and C incrementally
according to a given change c. In order to update F , the change c is mapped to a sequence
of changes of the clique graph H referred to change mapping technique and then local DFS
forest updating algorithm (Algorithm 1) is conducted on H . In the following, we introduce
the change mapping details from incremental k-clique clustering to incremental 2-clique
clustering.

4.2.1 K-clique edge deletion

If edge uv is deleted from G, C and H change as follows. For each clique Ci ⊇ {u, v} with
size > k in C, Ci is divided into two cliques Ci −{v} and Ci −{u}. Then, Ci −{u} is inserted
into C as a new maximal clique and Ci is replaced with Ci−{v}. The changes to clique graph
H are as follows. Firstly, some existing edges of clique node i are removed if the intersection
between Ci and those neighboring cliques is less than k − 1 due to the deletion of node v

from Ci . Secondly, a new clique node n+1 corresponding to Ci −{u} is added to H . Thirdly,
edges are added between clique node n+ 1 and other clique nodes if Cn+1 has at least k − 1
common nodes with those cliques.

123



Incremental K-clique clustering

Let’s see some special cases for deleting edge uv. If there is not any clique in C containing
both u and v, C and H keeps unchanged. If there is a clique Ci with size= k containing both
u and v, Ci is deleted from C and clique node i is removed from H . Based on the analysis
above, the algorithm KED is listed in Algorithm 5.

Algorithm 5 KED
Input: G, C, H, F, P, k , u and v

Output: updated G, C, H, F, P
1: for all Ci in C containing u and v do
2: if si ze(Ci ) > k then
3: n← n + 1
4: Cn ← Ci − {u}
5: Ci ← Ci − {v}
6: add node n into H and F
7: for all neighbor j of i in H do
8: if

∣∣Ci ∩ C j
∣∣ < k − 1 then

9: call TED(H, F, i, j)
10: if

∣∣Cn ∩ C j
∣∣ ≥ k − 1 then

11: call TEA(H, F, n, j)
12: call TEA(H, F, i, n)
13: else
14: delete Ci from C
15: delete i from H and F
16: update P according to C and F
17: return updated G, C, H, F, P

Algorithm 6 KEA
Input: G, C, H, F, P, k, u and v

Output: updated G, C, H, F, P
1: C N ←common neighbors of u and v

2: C ′ ←the maximal cliques in G(C N )

3: for all C ′i in C ′ do
4: C ′i ← C ′i + {u, v}
5: for all C ′i in C ′ do
6: for all C j in C do
7: if C ′i ⊇ C j then
8: delete C j from C
9: for all neighbor l of j in H do
10: call TED(H, F, l, j)
11: delete node j from H and F
12: n← n + 1, Cn ← C ′i
13: for all C j in C do
14: if

∣∣Cn
⋂

C j
∣∣ ≥ k − 1 then

15: call TEA(H, F, n , j)
16: update P according to C and F
17: return updated G, C, H, F, P

4.2.2 K-clique edge addition

While adding edge uv to G, new maximal cliques can be found in the following way. (1) Get
the common neighbors of u and v in G, C N (u, v) = {w|w ∈ N (u) ∧ w ∈ N (v)} where
N (u) denotes the neighbors of u. (2) Find all the maximal cliques C ′ (of size ≥ k − 2) in

123



D. Duan et al.

G(C N (u, v)) which is a subgraph of G induced by node set C N (u, v). (3) For each clique
C ′i in C ′, add u and v into C ′i . Then C ′ is the new generated maximal clique set (of size ≥ k)
after edge uv is added.

It must be noted that cliques in C ′ may contain some original cliques in C as a subset,
so the inclusion relation between two cliques with one from C ′ and another from C must be
tested. If C ′i in C ′ contains C j in C, C j is replaced with C ′i . If C ′i does not contain any clique
in C , insert C ′i into C as a new clique and then a new clique node and some necessary edges
are added into H . Algorithm 6 shows the algorithm KEA in a more detail.

5 Algorithm complexity analysis

The time complexity of the proposed algorithms is analyzed and compared with correspond-
ing static algorithms and incremental spectral clustering algorithm in this section. Local DFS
forest updating is analyzed first, and then incremental k-clique clustering and the complexity
comparison comes finally.

5.1 Complexity of local DFS forest updating

The time complexity of local DFS forest updating algorithm depends on the type of the input
change c. As discussed in the previous section, the two non-trivial cases are two-clique edge
deletion and two-clique edge addition.

5.1.1 Two-clique edge deletion

If a backward edge is deleted, the time complexity is O(1). If the deleted edge uv is a forward
edge, alt[v] is first computed in O(hv) time, where hv is the height of node v in DFS tree
which is usually in log scale of the total number of nodes, i.e. hv = O(logN ). If alt[v] = v

the time complexity of subsequent processing is O(1), Otherwise, it is O(|subtree[v]|)
which is the complexity of DFS on subgraph of G induced by nodes in subtree[v]. Over-
all, The best time complexity of deleting a forward edge is O(logN ) and the worst one is
O(logN + |subtree[v]|).

5.1.2 Two-clique edge addition

The best time complexity of edge addition is O(1) (e.g. when a backward edge is added) and
the worst case is O(|tree[v]|) which is the complexity of DFS on subgraph of G induced by
nodes in tree[v].

Above all, the best time complexity of local DFS forest updating is O(1), while the worst
one is O(max(logN + |subtree[v]|, |tree[v]|)).
5.2 Complexity of general incremental K-clique clustering

The time complexity of incremental k-clique clustering algorithm depends on the type of the
given change c. As discussed in the previous section, the primary cases are k-clique edge
deletion and k-clique edge addition.

123



Incremental K-clique clustering

Table 1 Comparison of algorithms’ time complexity

Algorithms Best Worst

Incremental K -Clique
K = 2 O(1) O(max(logN + |subtree[v]|, |tree[v]|))
K ≥ 3 O(1) O(max(logL + |subtree|, |C N |3|C N |/3 + |tree|))

Static K -Clique
K = 2 O(N ) O(N )

K ≥ 3 O(N ) O(N3N/3)

Incremental spectral
O(N ) O(N )

5.2.1 K-clique edge deletion

Let n be the number of cliques of size > k including both u and v. Let d be the average degree
of nodes in clique graph H . Then, the overall average time complexity of KED is O(ndx),
where x represents the complexity of local DFS forest updating on clique graph H . Since n
and d can be regarded as constants, the time complexity of KED equals to O(x). Therefore,
the best time complexity is O(1) and the worst one is O(max(logL + |subtree|, |tree|),
where |subtree| and |tree| denote the average number of nodes in subtrees and trees of H
respectively and L is the number of maximal cliques in G.

5.2.2 K-clique edge addition

The worst time complexity of maximal cliques discovery is O(N3N/3) (Etsuji Tomita and
Tanaka 2004). Analogically, the time complexity of maximal cliques discovery on a subgraph
induced by common neighbors C N of u and v (line 2 of Algorithm 6) is O(|C N |3|C N |/3).
The time complexity of the rest part equals to that of edge addition on graph H with best com-
plexity O(1) and worst O(|tree|). Therefore, the total time complexity is O(|C N |3|C N |/3)

for the best case and O(|C N |3|C N |/3 + |tree|) for the worst one.
Above all, the best time complexity of incremental K -clique clustering is O(1) and the

worst is O(max(logL + |subtree|, |C N |3|C N |/3 + |tree|)).
5.3 Complexity comparison

The time complexity of static 2-clique clustering is O(N ). The worst time complexity of static
k-clique clustering is O(N3N/3 + L) and the best one is O(N ). As reported in Ning et al.
(2010), the time complexity (best or worst one) of incremental spectral clustering algorithm
is O(N ).

The comparison of the best and worst time complexity of the proposed algorithms, static
algorithms and incremental spectral clustering algorithm are listed in Table 1, which shows
that the time complexity of incremental k-clique clustering algorithms outperforms static ones
and incremental spectral clustering algorithm. Note that the average values of |subtree[v]|
or |subtree| and |tree[v]| or |tree| and |C N | can be regarded as constants in real social
networks.

123



D. Duan et al.

6 Experiments

In this section, incremental k-clique clustering algorithms are evaluated through experiments
on two real dynamic social network datasets. Before going to the experiments, the datasets
are first described.

6.1 Datasets

6.1.1 ENRON

This dataset consists of the e-mail communication data1 of ENRON company from Sept.
27th 1999 to Mar. 5th 2000. There are totally 6,535 distinct email addresses (nodes) and
48,808 messages (edges) in the dataset. One week is chosen as a time-slice, then there are
23 time-slices in all. Summing up all the time-slices, there are totally 28,160 changes. The
communicating network of the first time-slice is the initial graph and all the 28,160 changes
form the change stream.

6.1.2 DBLP

This dataset consists of papers published in five proceedings (KDD, ICDM, CIKM, WWW
and SIGIR) from 2006 to 2009 extracted form DBLP.2 In this dataset, one year is regarded
as a time-slice. For each year, a co-author network can be constructed by regarding authors
as nodes and co-authorships as edges. To make the co-author networks being connected, just
the largest connected components are preserved. After the preprocessing, there are 1,173
authors and 4,089 co-authorships left. There are totally 5,514 nontrivial changes between
continuous time-slices. The co-author network in 2006 is regarded as the initial graph and
all the 5,514 changes from the change stream.

6.2 Efficiency study

In this subsection, the efficiency of our proposed algorithms are studied and compared with
corresponding static algorithms and incremental spectral clustering algorithm (Ning et al.
2010) through experiments on the ENRON and DBLP datasets described in the previous
subsection. All the algorithms are implemented in standard C++ and conducted on PC with
Core Duo 2.26 GH CPU and 3 GB RAM.

The time costs of the algorithms on ENRON and DBLP data are illustrated in Figs. 6 and
7. In the two figures, the total time cost of each time slice instead of that of each change is
recorded for the purpose of comparison convenience. Since incremental and static algorithms
have the same time cost in the first time-slice, thus they are omitted in the figures. For the
sake of clarity, the time costs are shown in the log-scale. The comparison results show that
the time costs of incremental k-clique (k = 2, 3, 4) clustering algorithms are much lower
than those of corresponding static k-clique clustering algorithms and incremental spectral
clustering algorithm, which validates the theoretic time complexity comparison results.

We also conduct experiments on k values from 2 to 9. In these experiments, the total time
of all the time-slices are recorded. Figure 8 shows the results. Notice that Y-axis is shown
in log-scale. From the result, it also can be observed that the incremental algorithms are

1 http://www.cs.cmu.edu/~enron/.
2 http://dblpvis.uni-trier.de/.

123

http://www.cs.cmu.edu/~enron/
http://dblpvis.uni-trier.de/


Incremental K-clique clustering

Fig. 6 The time costs of the algorithms on ENRON data

Fig. 7 The time costs of the algorithms on DBLP data

Fig. 8 Total time cost of the
algorithms

0.001

0.01

0.1

1

10

100

1000

10000

1 2 3 4 5 6 7 8

To
ta

l T
im

e 
C

o
st

 (
M

S
)

x1
00

0

K

Sta ENRON Sta DBLP Inc ENRON Inc DBLP

executed much more quickly than static algorithms. As k increases from 3, the time costs
of either incremental or static k-clique clustering algorithms decrease. That is because the
larger the k value, the sparser the clique graph.

6.3 Effectiveness study

In this subsection, we study the clusters in DBLP dataset discovered by our algorithms.
Only DBLP dataset is chosen for this experiment since the profiles of authors can be easily
obtained from their homepages. Particularly, the incremental 3-clique clustering algorithm

123



D. Duan et al.

Tie-Yan Liu
Hang Li

(a)

Jiawei Han

Kun Zhang

Wei Fan
(b)

Christos Faloutsos
Ravi Kumar

Jure Leskovec

(c) (d)

Fig. 9 Discovered clusters in DBLP dataset at the end of 2008

is applied in this subsection. The algorithm discovers several main research groups with size
significantly large. These research groups are relatively stable from year 2006 to 2009, i.e.
the membership are sustained during this period. However, there are new authors joining
and some old authors leaving these groups and some groups are merged to a large one and
large groups are divided to small ones as the network evolves. The incremental algorithm
can capture these detailed evolutions.

We validate the discovered clusters through carefully investigating the lead authors’ affil-
iations from their homepages. However, identifying a leader in a link based cluster is a well
known ranking problem, for which there are large volume of measurements. Here, we just
use the node’s internal degree3 to evaluate the importance of a node in a cluster. The larger
the internal degree, the more likely the node is a leader.

Figure 9 shows four main clusters discovered at the end of 2008 marked by some lead
members. Through carefully checking the homepages of the authors, Figure 9a corresponds
to Information Retrieval and Mining Group of Microsoft Research Asia, where Tie-yan Li
and Hang Li are the lead researcher and senior researcher respectively. The lead authors in
Fig. 9b are from University of Illinois at Urbana-Champaign (Jiawei Han) and IBM T.J.Wat-
son (Fang Wei), which suggests there exist collaboration between the two organizations. The
leaders in Fig. 9c are from Yahoo! research and Carnegie Mellon University, which implies
that the two research groups have some collaborations. Ravi Kumar is an active researcher in
Yahoo! research and Christos Faloutsos is a professor of Carnegie Mellon University, who
supervised Jure Leskovec. Figure 9d is a data mining research group from Arizona State
University, where Huan Liu is a professor and Jianping Ye is an associate professor and
Zheng Zhao is co-supervised by the above two authors.

Given a change, i.e. adding or deleting an edge, experiments show that the clusters of
the DBLP network just changes locally. There are many changes not affecting any cluster.
Our algorithms discover those changes which lead to significant changes to some clusters.
Among 5,514 changes of DBLP network, it is found that there are 1,606 changes affecting
the clusters and 125 of them directly lead to the dividing or merging of clusters while the left
changes just drawing a new member to or excluding an old member from a cluster.

For example, Table 2 lists several changes which lead to the dividing or merging of some
clusters. Through checking the profiles of the authors, the meanings of clusters divided or
merged are given out manually.

Static k-clique clustering algorithms can also obtain the changes of the clusters by recom-
puting on the updated networks, but the incremental k-clique clustering algorithms are much
more efficient as the previous subsection shows. Comparing to the incremental spectral
clustering algorithm which gives out an approximation of updated eigenvectors leading to

3 The number of neighboring nodes in the same cluster.

123



Incremental K-clique clustering

Table 2 Changes leading to dividing and merging of clusters in DBLP dataset

Small changes Changes to the clusters

(A. Z. Broder, M. Sayyadian)− A large Yahoo! research group is divide

(S. Vadrevu, X. Li)+ Two small Yahoo! research groups are merged

(S. Zheng, C. L. Giles)+ Two groups from PSUa and MSRAb are merged together

(W.-C. Lee, C. L. Giles)− A large group from PSU and MSRA is divided

a Pennsylvania State University
b Microsoft Research Asia

Fig. 10 The clusters a before and b after adding edge (4754, 7406)

accumulating errors, incremental k-clique clustering algorithms produce the same results as
static algorithms accurately with no accumulating error.

6.4 Incremental K -clique clustering algorithm vs. snapshot graph model based algorithms

Snapshot graph model based algorithms track the clusters in the granularity of a time-slice.
However, the interval of a time-slice may be arbitrarily chosen by a user, such as a day, a
week or a month. Alternatively, incremental k-clique clustering algorithm tracks the clusters
in the granularity of a change rather than a time-slice, thus the time interval setting problem
of snapshot graph model is naturally eliminated. Moreover, incremental k-clique clustering
can capture evolving details that snapshot graph model misses. The following cases justify
this argument.

Figure 10 shows the clustering results4 before and after adding edge (4754, 7406)5.
Because of the addition of edge (4754, 7406), yellow nodes {266, 295, 7602} and purple
node 303 become members of the green cluster and black nodes {138, 4501} change its color
to green as they belong merely to the green cluster after the edge’s addition. Figure 11 shows
the clustering results before and after deleting edge (4785, 271). Due to the deletion of edge
(4785, 271), the color of node 271 changes from green to white because it leaves the green
cluster and nodes {4771, 7526} are separated from the green cluster and form the purple
cluster.

4 White nodes are not in any 3-clique cluster and black nodes are in more than one clusters and nodes with
other colors represent independent clusters.
5 Numbers denote the identities of nodes.

123



D. Duan et al.

Fig. 11 The clusters a before and b after deleting edge (4785, 271)

As the above cases show, incremental k-clique clustering tracks the evolution of clusters
with respect to a small change. During the 36th time-slice, experiments show that there are
totally 62 intermediate changes of the clusters. Arguably, any snapshot graph model based
algorithm can not find these evolving details. On the other hand, if the time interval is set to
a rather short one (extremely, once a change happens a new time-slice starts), the snapshot
graph model based algorithms will cost much more time than incremental algorithms since
it recomputes clusters on the whole network whenever a change comes.

7 Conclusion and future work

This paper models the dynamics of social networks as a change stream. Based on this model,
local DFS forest updating algorithm is proposed for incremental 2-clique clustering and
then it is generalized to incremental k-clique clustering. The incremental strategies are well
designed to guarantee the accuracy of the clustering result with respect to any kind of changes.
Experimental results on ENRON and DBLP datasets show that the proposed algorithms are
much more efficient than corresponding static algorithms and incremental spectral cluster-
ing algorithm. In addition, incremental k-clique clustering algorithms naturally avoid the
accumulating error that incremental spectral clustering algorithm has. In contrast to snapshot
graph model based algorithms, our algorithms can capture much more detailed changes of
clusters in the granularity of a small change. Furthermore, local DFS forest updating algo-
rithm not only gives out the updated connected components of a graph but also the updated
DFS forest, which can be applied to other issues, such as finding a simple loop through a
node. There are still some interesting works left for future research, including exploiting
the power of the discovered changes uncovering other interesting knowledge, performing
experiments on other kinds of datasets to further validate the capability of our algorithms and
incorporating the textual information into the incremental k-clique clustering to track both
the topical and structural changes of clusters.

Acknowledgments This work is supported by National Natural Science Foundation of China under Grant
70771043, 60873225, 60773191, National High Technology Research and Development Program of China
under Grant 2007AA01Z403, Natural Science Foundation of Hubei Province under Grant 2009CDB298,
Wuhan Youth Science and Technology Chenguang Program under Grant 200950431171, Open Foundation
of State Key Laboratory of Software Engineering under Grant SKLSE20080718, and Innovation Fund of
Huazhong University of Science and Technology under Grant Q2009021.

123



Incremental K-clique clustering

References

Abello J, Resende MGC, Sudarsky S (2002) Massive quasi-clique detection. In: LATIN, pp 598–612
Airoldi EM, Blei DM, Fienberg SE, Xing EP (2008) Mixed membership stochastic blockmodels. J Mach

Learn Res 9(6):1981–2014
Asur S, Parthasarathy S, Ucar D (2007) An event-based framework for characterizing the evolutionary behavior

of interaction. In: KDD, pp 913–921
Bron C, Kerbosch J (1973) Finding all cliques of an undirected graph. Commun ACM 16(9):575–577
Bron C, Kerbosch J (2009) A particle-and-density based evolutionary clustering method for dynamic networks.

PVLDB 2(1):622–633
Chakrabarti D, Kumar R, Tomkins A (2006) Evolutionary clustering. In: KDD, pp 554–560
Chi Y, Song X, Zhou D, Hino K, Tseng B (2007) Evolutionary spectral clustering by incorporating temporal

smoothness. In: KDD, pp 153–162
Cohn D, Chang H (2000) Learning to probabilistically identify authoritative documents. In: ICML, pp 167–174
Derenyi I, Palla G, Vicsek T (2005) Clique percolation in random networks. Phys Rev Lett 94(16):160–202
Du N, Wang B, Wu B, Wang Y (2008) Overlapping community detection in bipartite networks. In: WIC, pp

176–179
Duan D, Li Y, Jin Y, Lu Z (2009) Community mining on dynamic weighted directed graphs. In: CNIKM, pp

11–18
Etsuji Tomita A, Tanaka HT (2004) The worst-case time complexity for generating all maximal cliques and

computational experiments. Theor Comput Sci 363:28–42
Everett MG, Borgatti SP (1998) Analyzing clique overlap. Connections 21(1):49–61
Farkas IJ, Abel D, Palla G, Vicsek T (2007) Weighted network modules. New J Phys 9(6):180
Frederickson GN (1983) Data structures for online updating of minimum spanning trees. In: SOTC, pp 252–257
Girvan M, Newman M (2002) Community structure in social and biological networks. PNAS 99(12):7821–

7826
Görke R, Hartmann T, Wagner D (2009) Dynamic graph clustering using minimum-cut trees. In: WADS, pp

339–350
Greene D, Doyle D, Cunningham P (2010) Tracking the evolution of communities in dynamic social networks.

In: ASONAM, pp 176–183
Hofmann T (1999) Probabilistic latent semantic analysis. In: UAI, pp 289–296
Lehmann S, Schwartz M, Hansen LK (2008) Biclique communities. Phys Rev E 78(1):016–108
Lin YR, Chi Y, Zhu S, Sundaram H, Tseng BL (2009) Analyzing communities and their evolutions in dynamic

social networks. TKDD 3(2):1–31
Lin YR, Sun J, Castro P, Konuru R, Sundaram H, Kelliher A (2009) Metafac: community discovery via

relational hypergraph factorization. In: KDD, pp 527–536
Newman MEJ (2006) Modularity and community structure in networks. In: PNAS, pp 8577–8582
Ning H, Xu W, Chi Y, Gong Y, Huang T (2010) Incremental spectral clustering by efficiently updating the

eigen-system. Pattern Recogn 43(1):113–127
Palla G, Derenyi I, Farkas I, Vicsek T (2005) Uncovering the overlapping community structure of complex

networks in nature and society. Nature 435(7043):814–818
Palla G, Barabasi A, Vicsek T (2007) Quantifying social group evolution. Nature 446(7136):664–667
Saha B, Mitra P (2006) Dynamic algorithm for graph clustering using minimum cut tree. In: ICDM workshops,

pp 667–671
Shi J, Malik J (1997) Normalized cuts and image segmentation. In: CVPR’97, pp 731–737
Sun J, Papadimitriou S, Yu P, Faloutsos C (2007) Graphscope: Parameter-free mining of large time-evolving

graphs. In: KDD, pp 687–696
Sun Y, Yu Y, Han J (2009) Ranking-based clustering of heterogeneous information networks with star network

schema. In: KDD, pp 797–806
Sun Y, Tang J, Han J, Gupta M, Zhao B (2010) Community evolution detection in dynamic heterogeneous

information networks. In: MLG-KDD, pp 137–146
Tang L, Liu H, Zhang J, Nazeri Z (2008) Community evolution in dynamic multi-mode networks. In: KDD,

pp 677–685
Tantipathananandh C, Berger-Wolf T, Kempe D (2007) A framework for community identification in dynamic

social networks. In: KDD, pp 717–726
von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17(4):395–416
Yang T, Chi Y, Zhu S, Gong Y, Jin R (2009) A bayesian approach toward finding communities and their

evolutions in dynamic social networks. In: SDM, pp 990–1001
Yang T, Chi Y, Zhu S, Gong Y, Jin R (2010) Directed network community detection: a popularity and produc-

tivity link model. In: SDM, pp 742–753

123


	Incremental K-clique clustering in dynamic social networks
	Abstract
	1 Introduction
	2 Related works
	2.1 Static clustering
	2.2 Dynamic clustering
	2.3 Incremental network clustering
	2.4 K-clique clustering

	3 Problem definition
	4 Incremental K-clique clustering algorithms
	4.1 Incremental 2-clique clustering
	4.1.1 Two-clique edge deletion
	4.1.2 Two-clique edge addition

	4.2 General incremental K-clique clustering
	4.2.1 K-clique edge deletion
	4.2.2 K-clique edge addition


	5 Algorithm complexity analysis
	5.1 Complexity of local DFS forest updating
	5.1.1 Two-clique edge deletion
	5.1.2 Two-clique edge addition

	5.2 Complexity of general incremental K-clique clustering
	5.2.1 K-clique edge deletion
	5.2.2 K-clique edge addition

	5.3 Complexity comparison

	6 Experiments
	6.1 Datasets
	6.1.1 ENRON
	6.1.2 DBLP

	6.2 Efficiency study
	6.3 Effectiveness study
	6.4 Incremental K-clique clustering algorithm vs. snapshot graph model based algorithms

	7 Conclusion and future work
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


