
 1

An Architecture for Multidatabase Systems

 Based on CORBA and XML

Li Bing, Lu Zheng-Ding, Xiao Wei-Jun, Li Rui-Xuan, Zhang Wei and Mudar Sarem

 College of Computer Science & Technology

Huazhong University of Science & Technology

WuHan, HuBei, China, 430074

libingyk@public.wh.hb.cn

Abstract

A multidatabase system is an effective approach to implement data

sharing and interoperability among many distributed and

heterogeneous data sources. In this paper, a CORBA-based

architecture model of multidatabase system is firstly introduced. Then,

an XML-oriented common data model, named XIDM, is presented.

These models conform well to the characteristics of multidatabase

systems such as autonomy, distribution and heterogeneity. Panorama,

a prototype system implemented based on these models, is introduced

at the end of the paper.

1. Introduction

With the rapid development of computer networks,

the need for a uniform access to information stored

in different databases has grown increasingly

during the last decade. In order to solve these

problems, the integration of different data

management systems is needed, making differences

between the existing data management systems

invisible and providing users with a uniform and

transparent access to all the databases. This

integration of several existing heterogeneous

database systems and file systems is multidatabase

system (MDBS) [1,2]. All these database systems

and file systems, which have their own local

database management systems ， (LDBMS) are

called local database systems (LDBS). A MDBS

constructs global system management level and

provides interface towards global users so those

users can access all heterogeneous database

systems and file systems transparently.

As a new type of DBS, MDBS have common

characteristics of general DBS. For example, a

MDBS must have ACID properties of transaction.

Furthermore, MDBS have special characteristics

such as pre-existence, autonomy, distribution and

heterogeneity [3,4]. Distribution means that data

are stored in disperse fields that can

intercommunicate. In fact, because LDBSs locate

at different nodes of networks, MDBSs are usually

distributed. A MDBS is also faced with distributive

transaction processing and field transparence, etc.

But the LDBSs comprising MDBS are pre-existing.

Main problem for MDBS is not to divide data but

to achieve schema integration. This also means that

some conflicts may exist among schemas and data

of each LDBS and integrality restriction defined on

each LDBS may be contradictory. So every LDBS

doesn’t correspond with each other in logic. MDBS

must iron out all differences in global so that its

users can access consistent and reasonable data.

Autonomy of MDBS means each LDBS is free

from the influence or control of others. Even

though LDBSs have been integrated into MDBS,

their intrinsic application programs are still

performed in each LDBS that has its own DBMS to

manage data.

The heterogeneity of MDBS exists at two

aspects: environment and data. Environment

heterogeneity means different data sources have

self-governed platforms and use different measures

to share data. This includes diverse hardware,

different operating systems, different

communication protocols, and different request for

integrality and security.

Data heterogeneity means different systems

describe their data with different manners. In fact,

even in the same system, there are varied methods

describing their data. Although MDBSs are not

always heterogeneous, for most applications,

especially MDBS including file systems,

heterogeneity is much in evidence. Thereby, it is

difficult for heterogeneous MDBSs to achieve

query processing and transaction processing.

In a word, an effective and practical MDBS must

completely solve problems on distribution,

autonomy and heterogeneity. This paper discusses

some implement technologies based-on CORBA

(the Common Object Request Broker Architecture)

and XML（eXtensible Markup Language）, and then

introduces Panorama, a MDBS prototype based on

these technologies under development in HUST.

2. MDBS architecture based on CORBA

An architecture model based-on CORBA is

applied in Panorama (see figure 1.) [5]. The model

consists of three levels: MDBS application level,

MDBS system level and LDBS level. MDBS

system level is also composed of two sub-levels:

Figure 1. A model of MDBS architecture

MDBS application level

Local database level

Global management sub-level

Local agent sub-level

MDBS
system
level

O
R

B

global management sub-level and local agent

sub-level.

CORBA specification, adopted by the OMG

(Object Management Group), provides favorable

specification and practical standard for distributed

object applications so as to promote development

of client/sever architecture. Because CORBA

doesn’t relate concrete implements in low level but

need only to define an interface to high level. Thus,

designers need not to deal with a great lot of details

about implementation while constructing a MDBS

and users can access data through an identical

interface. This means CORBA-based model has

adequate flexibility, and isn't excessively complex.

Because the main aim of CORBA is to achieve

distributing computation in heterogeneous

environment, some factors such as different

connection of networks, different communication

protocols and supporting from different operating

systems need not take into account. Therefore,

through adopting CORBA specification to

implement a MDBS, not only problems about

distribution and environment heterogeneity can be

solved, but also the complexity of the whole

system can be reduced. Such MDBSs are able to be

more open and scalable.

In this model, MDBS application level includes

variant applications that need access to global

integrated data. These applications can access data

stored in every LDBS through invoking relevant

APIs (Application Program Interfaces) to MDBS as

if in one DBS. MDBS system level is the core of

the whole system. According to corresponding

integrated information, global management

sub-level decomposes global query requests

received from MDBS application level into many

local sub-queries that will be sent to local agent

sub-level and processes results from local agent

sub-level that will be sent back to MDBS

application level. Moreover, global management

sub-level must manage integrated information and

ensure correctness and coherence of global

transaction processing.

Local agent (LA) sub-level is composed of many

local agents. There is one-to-one correspondence

between each LA and LDBS. On the one hand, a

local agent sub-level converts every local

sub-query request sent from global management

level into some format that its LDBS can accept,

and then sends these sub-queries to its LDBS. On

the other hand, a local agent sub-level converts

every result of sub-query into the format required

by global management level and returns these

results to global management level.

Local database level consists of LDBSs

participating in MDBS. Both MDBS application

level and global management sub-level

communicate with each other through ORB (Object

Request Broker), and so do global management

sub-level and local agent sub-level. A LDBS

communicates with its local agent through various

special interfaces provided by the LDBS, such as

CLI (Call Level Interface) and ODBC (Open

Database Connectivity).

3. Common data model based on XML

3.1. Common data model in MDBS

The main difference between MDBS and

traditional distributed DBS is the definition of the

global schema. Global schema of traditional

distributed DBS, which originated from global

logic integration, present global conceptual view.

However, global schema of MDBS, which

originated from incompactly integration, expresses

the set of the shared data in each LDBS. In other

words, data that global users access in the MDBS

consists of the shared data in each LDBS, and other

private data are provided for local applications.

That is to say, the global DBS of a traditional

distributed DBS is a union set of each local DBS

and the global DBS of a MDBS is a subset of this

union set. So a special common data model (CDM)

is needed to define global conceptual schema.

In addition, due to the heterogeneity existing

between data models of LDBSs, a heterogeneous

MDBS must present mappings between concepts in

different model. A CDM is usually created so that

model of every LDBS can create mappings to the

CDM. So CDM is the base of integrating

heterogeneous data in MDBS. Currently, while

selecting a CDM, two principles must be complied

with:

 CDM should be as easy as possible so

that it convert with data models of

LDBSs.

 Common data language of the CDM

should be convenient for expression of

data processing.

3.2. XIDM: a common data model oriented

to XML

Currently, OO (Object Oriented) model is

usually used as CDM of MDBS [6]. However, in

order to integrate file systems into MDBS, it is

necessary for traditional OO model to be extended.

Because data in FS, often called semistructured or

non-structured data, [7,8,9] lack explicit structure

and store with meta-data, a CDM that can be use to

integrate FS should has capability of describing

structures of multiple files. In fact, a powerful

common data model is not only the foundation on

which export schemas are built, but also an

advantage to query component systems efficiently.

XML（eXtensible Markup Language）is a meta

markup language extending HTML greatly[10].

People can define their own set of tags and make it

possible for other parties (people or programs) to

know and understand these tags. This makes XML

much more flexible than HTML. Furthermore, as a

self-describing language, XML orient content of

data completely. XML can describe various data

structures such as linear list, tree and graph. So

XML is becoming a general specification of data

interface among various application systems.

At present, a valid XML document must comply

with the constraints expressed in an associated

document type declaration (DTD) that restrict the

logical structure of the document as a grammar

definition and support the use of predefined storage

units. DTD is similar to the schema of a traditional

database in many aspects. It is helpful to add

structure on semistructured data in various

applications. However, there are some defects in

DTD:

 Grammar of DTD is special different from

XML;

 DTD provides limited facilities for applying

datatypes to document content;

 DTD doesn’t support namespace;

 Content model in DTD is not an open model.

Accordingly, a new content model named XML

schema [11,12], which is itself represented in

XML_1.0, provides a superset of the capabilities

found in DTDs for specifying datatypes on

elements and attributes. This means that document

authors, including authors of traditional documents

and those transporting data in XML, can achieve a

higher degree of type checking to ensure

robustness in document understanding and data

interchange. A schema can be viewed as a

collection (vocabulary) of type definitions and

element declarations whose names belong to a

particular namespace called a target namespace.

The target namespace enables us to distinguish

between definitions and declarations from different

vocabularies. XML Schema also enables us to

indicate that any attribute or element value must be

unique within a certain scope.

Explicit structure of a XML document is a tree,

but depending on some attribute types XML can

represent graph structure. Consequently, we

provide a data model, called XIDM (XML-based

Integrating Data Model), which bases on XML

schema and serves as a common data model for

integrating data in file systems. Next, we give

several simple definitions useful for describing

XIDM.

Comments:

1) An XML graph may be generated not only

from parsing a XML document, but also from

transforming or querying an existing XML graph.

2) XIDM is an ordered model. Because DTD or

XML schema can govern the appearing order for

elements and sub-elements, nodes in an XML graph

can be arranged in order. A order model has many

advantages such as more complex semantic

expression and more exact querying. Provided no

order in DTD or XML schema, an manual order

could be assigned to the XML graph.

3) XML graph does not have a unique

representation as an XML document. It is obvious

for the XML graph whose XML document doesn’t

assign a special order in its DTD or XML schema.

Although element order is given by DTD or XML

schema, on account of different search strategy for

selecting successor node such as depth-first or

breadth-first, XML graph is different also.

4. Implement of the Panorama

Architecture of Panorama is based on above

models (see figure 2.). Functions of each

component in the system are explained as follows:

4.1. Schema Information Manager (SIM)

4-level schema architecture is implemented in

Panorama MDBS:

 Local schema: Local schema is

expressed in the native data model of the

local database. Thus, the local schemas

of different local databases may be

expressed in different data models, such

as OO model, relation model, etc. If local

system is file system that lacks schema, a

schema based on XIDM can be added to

the file system.

 Export schema: For each local database,

Panorama provides tools to translate the

parts of its local schema into a schema

expressed in XIDM automatically, which

is called the export schema. This

translating process creates a mapping

between class of local schema and class

of export schema.

 Global schema: A global schema, created

by the integration of multiple export

schemas and based on XIDM, presents

mapping information about distribution

of global data. Query vs. global schema

can be transmitted to corresponding

export schema.

 External schema: For

customization or access control reasons,

an external schema is created to meet the

needs of a specific group of users or

applications.

Schema Information Manager integrates export

schemas into a global schema and provides and

manages the global schema information necessary

for decomposition of global queries into

sub-queries. SIM is started at the initialization

phase of MDBS system, present a series of serves

and stays alive during the lifetime of the system.

4.2. Ticket manager

Because serializable is the guarantee of

the correct execution for parallel

transactions, [13,14,15] arithmetic for concurrent

control about MDBS transactions must ensure

that execution for transactions possesses

global serializable. In MDBS, nesting

transaction and flatness transaction differ in

correctness. Apropos of nesting transaction, it is

necessary for not only global transactions but also

sub-transactions in every LDBS to be consistent in

executive sequence.

Panorama adopts nesting Ticket arithmetic for

nesting transaction. The arithmetic set a Ticket

item at every field, which decides the order in

which local sub-transactions of global transaction

are executed in LDBS. [16,17] Ticket is logic sign

according to time and stored as general data in

LDBS. Each sub-transaction of global transaction

must read and increase value of the Ticket, then

writes the vale into LDBS. Each value of the Ticket

with operation toward it is committed to local

concurrent control. Because of Ticket, order of

Figure 2. Panorama’s Architecture

MDBS
Application

Level

Local Agent1 LDBMS1Query’s Result
Processor

Global Transaction
Manager

Global Transaction
Schedule

Transaction Rollback
Manager

Query Optimizing
Manager

Global Query
Decomposer

Global Query
Manager

Syntax Parser

Global Agent

Schema
Information

Manager

Ticket
Manager

Global
Management

Sub-level

Local Agent

Sub-level

Local
Database

Level

…
…

…
…

G
lobal U

ser

Local Agent2 LDBMS1

Local Agent1 File System

global transaction is introduced into LDBS so that

local concurrent control protocols ensure global

serializable. The ticket manager is started at

the initialization of the MDBS and it continues to

serve the whole MDBS continuously.

4.3. Global Agent (GA)

Panorama system creates a global agent object

(GAO) when a global client creates a connection

with MDBS. GAO reseives global query requests

from client, creates global query manager object

(GQMO) and global transaction object (GTMO) to

process global query statement and return final

results to client. Because system ensure global

serializable, each GAO, which is executed

concurrently, increases the parallelism degree of

executing global transaction.

GQMO contains the following three parts:

Global query Syntax Parser (GSP): GSP

compiles query statement and stores the result into

special data structure. These results are sent to

global query decomposer.

Global Query Decomposer (GQD): According

to global schema information obtained from

requesting serve of SIM, GQD decomposes global

queries into sub-queries and prepares execution

plan for query. All sub-queries are sent to query

optimizing manager.

Query Optimizing Manager (QOM): QOM

optimizes the execution plan for query according to

scheduled optimizing strategy.

In query processing, results produced by each

sub-query are called middle results waiting for

processing. When plural middle results are

generated, GQMO creates an object named query’s

result processor to combine these results in one

result sent to GQMO. These servers (GSP, GQD

and GQM) are started on demand by the ORB using

the information provided by the ORB

administrator.

Every transaction needs a GTMO that obtains

Ticket from Ticket manager and schedules both

global transactions and sub-transactions according

to Ticket. After transactions processing, GTMO

that sends sub-queries to local agent commits

reports about results of transactions processing to

global agent. In addition, in case of failure of

global transactions GTMO requests to create a

transaction rollback manager to undo any changes

made in response to the global sub-transactions.

4.4. Local Agent (LA)

In MDBS, all material database operations are

executed by LDBMSs. As interface between global

management level and LDBS, local agents ensure

autonomy of each LDBS while achieving global

transactions. In addition, LA maintains export

schemas presented by LDBS, translates receiving

sub-queries into expression of query language in

local system and sends results of query to GQMO

after transforming these results into CDM.

 Panorama achieves LA with special interface of

database. [18] In this way, not only common data

types and public characteristics of all LDBS but

also special data types of each LDBS can be

supported well. Private characteristics of

characteristics, such as data models, stored

methods, transaction protocol, concurrent control

and user interfaces, are fully used so that

advancing efficiency of the MDBS. It is in fact

easy for file systems to achieve LA.

5. Conclusion and Status

In this paper, we have provided an effective

implement technology based on CORBA and XML,

which can be used to integrate various database

systems and file systems, which are distributed,

autonomic and heterogeneous. By this technology,

we’ve developed a MDBS prototype named

Panorama into which some database systems such

as Oracle, Sybase and DM2 (a database

management system developed at HUST, Wuhan, P.

R. of China.) can be integrated. For the moment,

Panorama processes ability to achieve essential

transaction processing and support general

operations such as query and modifying. Currently,

we are extending the global query language that

supports query languages of Oracle8 and Sybase to

support XML.

References

[1] Bright M.W. et al, “A taxonomy and current
issues in multidatabase systems”, IEEE
Computer, 1992, 25(3), pp. 50-59.

[2] Shirley A.Becker, Rick Gibson and Nancy
L.Leist, “A Study of a Generic Schema for
Management of Multidatabase Systems”, Journal
of Database Management, 1996, 7(4) pp. 14-20.

[3] Sheth, A.P. and Larson, J.A., “Federated
Database System for Managing Distributed,
Heterogeneous, and Autonomous Database”,
ACM Computing Surveys, 1990, 22(3) pp.
183-236.

[4] Witold Litwin, Leo Mark, Nick Roussopoulos,
“Interoperability of Multiple Autonomous
Database”, ACM Computer Survey, 1990, 22(3)
pp. 267-293.

[5] Object Management Group. “The Common
Object Request Broker: Architecture and
Specification Revison 2.2”, OMG Doc. 1998,2.

[6] Evaggelia Pitoura, Omran Bukhres, Ahmed
Elmagarmid, “Object Orientation in
Multidatabase systems”, ACM Computing
Surveys, 1995, 27(2) pp. 141-195.

[7] Serge Abiteboul. “Querying semistructured data”,
In Proceedings of 6th International Conference
on Database Theory (ICDT), Delphi, Greece,
1997 pp.1-18.

[8] Paolo Atzeni, Giansalvatore Mecca, Paolo

Merialdo. “Semistructured and Structured Data
in the Web: Going Back and Forth”, SIGMOD
Record, 1997, 26 (4) pp. 16-23.

[9] J. McHugh, S. Abiteboul, R. Goldman, D. Quass,
and J. Widom. “Lore: A Database Management
System for Semistructured Data”, SIGMOD
Record, 1997,26(3) pp. 54-66

[10] W3C, Extensible Markup Language (XML) 1.0
(Second Edition),
http://www.w3.org/TR/2000/REC-xml-20001006

[11] W3C, XML Schema Part 1: Structures,
http://www.w3.org/TR/2000/WD-xmlschema-1-
2000 0922/

[12] W3C, XML Schema Part 2: Datatypes,
http://www.w3.org/TR/2000/WD -xmlschema- 2-
20000922/

[13] U. Halici, B. Arpinar, and A. Dogac.
“Serializability of Nested Transactions in
Multidatabases”, In Proceedings of 6th
International Conference on Database Theory
(ICDT), Delphi, Greece, 1997 pp. 321-335.

[14] Kung,H. T. and Lehman et al , “Concurrent
manipulation of binary search trees”, ACM
Transactions on Database Systems (TODS),1980,
5(3) pp. 354-382.

[15] Jean-Marc Cadiou, “On semantic issues in the
relational model of data”, In Proceedings of 5th
Mathematical Foundations of Computer Science
(MFCS), Gdansk, Poland, 1976, pp.23-38

[16] D. Georgakopoulos, M. Rusinkiewicz, and A. P.
Sheth. “Using Tickets to Enforce the
Serializability of Multidatabase Transactions”,
IEEE Transactions on Knowledge and Data
Engineering, 1994, 6(1) pp. 166-180.

[17] Lu Zheng-ding, Xiao Wei-jun, Yi Tong, Li
Rui-ruan, “A Multidatabase Transaction Model
Based on Integrated Database Systems and File
Systems”, Journal of Huazhong university of
science and technology, 1998 ， 26(6) pp.
66-68,75.

[18] Lu Zheng-ding, Li Rui-ruan, Xiao Wei-jun.
“Design and Implementation of the Local Agent
in a Mulitidatabase Transaction Model”,
Computer research & development, 1998, 35(12)
pp.1130-1134

