
A Request-Driven Role Mapping for Secure Interoperation in Multi-Domain
Environment

Zhuo Tang, Ruixuan Li, Zhengding Lu

College of Computer Science and Technology, Huazhong University of Science and Technology,
Wuhan 430074, Hubei, China

E-mail: hust_tz@126.com, {rxli, zdlu}@hust.edu.cn

Abstract

This paper proposes a request-driven role
mapping framework for secure interoperation in
multi-domain environment. To support flexible
policy expression and inter-domain policy
mapping, we propose a more convenient and
effective method to complete the privilege query in
a general hybrid role hierarchy for all special
external requests. To describe the practical
relationship between roles, we partition the role-
mappings into three types. These mappings
describe the forms of the hierarchy between the
mapping roles respectively. With our analysis, for
the conflicts which arise from the role-mapping
among multi-domains, the effective way is to
choose a suitable type of role mapping.

1. Introduction

In a typical multi-domain environment [1],
we partition the domains into external and local
domains. The external is responsible for mediating
accesses to individual systems by maintaining a
global policy. When an external subject requests
the local resources, we assume this process is
established on the trust negotiation between the
external domain and the local domains. The
external subject accesses the local domains
through the authentication. However, the existing
works on trust negotiation does not address the
policy mapping. The current software for the
single sign-on (SSO)[2], such as central
authorization service (CAS)[3], does not support
the smaller granularity access control for the local
domains.

The interoperation is established between the
domains through role mappings. In this paper,
when the local domain received a request, it will
search the role hierarchy for the suitable nodes to
be mapped for the external. The permission
searching is founded on the set uniquely activable

set (UAS) [4]. We propose an algorithm to
compute the UAS for a general hybrid hierarchy in
local domains. For a given external request, we
can work out the most minimal role set for the
requested privilege.

The role-mappings describe the relationships
between two roles in different domains. These
relationships are partitioned into three types: I-
hierarchy, A-hierarchy and IA-hierarchy following
the GTRBAC [4]. From this partition, we can
resolve the conflicts for the role mapping between
different domains effectively.

We propose the theories based on that all the
security domains employing the RBAC police and
the external subjects trying to access some local
domains have passed the authentication. Finally,
we suppose that the domains trying to
interoperation have undergone the trust
negotiation.

The contributions of this paper are as follows:
(1) For ascertaining which roles should be

mapped in the local domains, this paper proposes a
simpler method to compute the UAS for a general
hybrid hierarchy.

(2) Three types of mappings between roles
are proposed. This paper firstly formalizes these
three types of role mappings. Through the analysis,
selecting the adaptive type of the role mapping can
be helpful for solving the conflicts in the
interoperations between different domains.

The rest of the paper is organized as follows.
Section 2 describes the basic concepts about
interoperation policies. Section 3 presents our
approach and the algorithms for the privilege
query in general hybrid hierarchy. Section 4
describes the establishment for the role mapping,
and focus on the resolutions of conflicts in the
multi-domain environment. The related work is
presented in Section 5, followed by the conclusion
in Section 6.
2. The Basic Concepts

2007 IFIP International Conference on Network and Parallel Computing - Workshops

Unrecognized Copyright Information
DOI 10.1109/NPC.2007.33

85

2007 IFIP International Conference on Network and Parallel Computing - Workshops

0-7695-2943-7/07 $25.00 © 2007 IEEE
DOI 10.1109/NPC.2007.33

83

2007 IFIP International Conference on Network and Parallel Computing - Workshops

0-7695-2943-7/07 $25.00 © 2007 IEEE
DOI 10.1109/NPC.2007.33

83

This section formally describes the syntax of
our policy for the privilege request.

The basic definitions of policy algebra are as
follows.

Definition 1. Authorization Term.
 Authorization terms are 2-tuple of the form:

<object, access mode >, which is shortening as
<O, A>. It is the basic form of the permission. The
set of authorization terms is denoted as P. That is
P= {<O, A>}.

Definition 2. Permission Set. Permission set
represents all permissions of some subject, which
is the set of the authorization terms. We can
formulize it as PS.

For example, we can describe a role r1’s all
permission as: PS (r1) = {<file1, + read>, <file2, -
write>}. That is to say the users, which are
assigned to r1, can read file1 and write file2.

The BNF definition for permission set as:
PS= PS| PS∪PS| PS∩PS| PS-PS| SoD (PS, PS);

SoD (PS1(r), PS2(r)) returns PS1(r) or PS2(r),
but it can return the PS1(r) and PS2(r) concurrently.

In this interoperation framework, the
communications between two domains are mainly

created by role mappings. The formalized
definition about role mappings as follows:

Definition 4 Role Mapping .We can formalize
the role mapping as a 5-tuple :< r1, d1, r2, d2,
I/A/IA>, r1 is a role in domain d1, r2 is a role in
domain d2 respectively, in general, that d1 is the
external domain, and d2 is the local domain. The
fifth parameter is the mapping mode, which
denotes the hierarchy relation of the two roles r1
and r2.The denotation I denotes the I-hierarchy,
which means that the permissions belongs to the
role r2 is also belongs to the role r1. The denotation
A denotes the A-hierarchy, which means that if the
role r1 is can be activated by a user, the role r2 is
also can be activated by the user. IA denotes the
IA-hierarchy, which represents that the
relationship between the two roles is IA-hierarchy.
This parameter divides the mapping into two
cases, which are called as I-mapping and A-
mapping. In following section, we will discuss it
more detailed.

As Definition 4 represents, we add a temporal
constrain to the role mappings. In this way, we can
formalize that a role in a special domain can be
enabled or activated by a role in another domain
for special duration.

Table 1. The predicates in multi-domain environment
Predicate Notation Formalization
I-mapping x→Iy ∀ p, p ⊆ PS(y)→p ⊆ PS(x)
A-mapping x→Ay ∀ u,can_activate(u,x) →can_activate(u,y)
IA-mapping x→IAy (x→IAy) ↔ (x→Iy) ∧(x→Ay)

In Table1, we summarize the predicates of the
role mapping in multi-domain environment with
temporal constrain. The denotation x, y represent
the roles in different domains. The predicate x→Iy
indicates that the user which assigned with role x
can acquire the permissions of the role y.

3. The privilege query in general hybrid
hierarchy

When a external subject requests accessing

the objects in local domains, we can formalize the
request as a temporal sequence: REQ (req(1),
req(2),……req(n)). In this section, we propose a
method for the privilege query in general hybrid
hierarchy. Comparing to the existing algorithms
such as [7], this method is more convenient and
effective.

A special request of an external subject can
be denoted as REQ = {({<O, A>})}. The element
of the set, req(i)={<O, A>}, means that the subject
wants the permission set {<O, A>} in the local
domain.

3.1. The Privilege Request in Multi-Domain
Environment

Firstly, we consider only one request req(i).
The external request does not conclude the
temporal constrains. We assume the req(i) includes
a set of request for the permissions. That is req(i)=
{<O, A>}.

The following is to discuss how the local
domain to create a role to satisfy the request. In
general, for a external access request, the requested
permission set req(i), the following situations may
arise in a local domain:

i.There is a set of roles in the local domain
can be supported for the external domain, possibly
hierarchically related, through which the req(i)can
be exactly acquired.

ii.There is a set of roles in the local domain
can be supported for the external domain, for
which req(i)is a subset of permissions that can be
acquired. That is, the set of roles’ permission set
include the permissions in the req(i) as well.

iii.There is a set of roles in the local domain
can be supported for the external domain, through

868484

which only a sub-set of req(i) can be acquired, as
in the above two cases.

We can create a 1-to-n mapping from the
external entity to the roles set in local domain for a
special request. Figure.1 illustrates a simple
example for the first case. The real line represents
the I-hierarchy while the broken line represents the
A-hierarchy between two roles. Assume that
req(i)= {p1}. In the local domain, p1 equals to
PS(r1) exactly. It is obvious that this request can be
satisfied if the external entity is mapped to the role
r1. It is the first scene we discuss above. But if
req(i) equals to {p1, p2, p3}, and in the local
domain, p1=PS(r1), p2=PS(r2), p3=PS(r3) exactly,
we have to implement a one to more mapping.
That is to say, the roles {r1, r2, r3} can be mapped
by the same external entity. If the senior role r4 is
not assigned with any other permission, it is the I-
senior role for the roles r1 and r2. For this case,
because the permissions of r4 are {p1, p2} and the
role r5 has any other permission to be assigned, the
return roles are {r4, r3}. Extremely, if the role r5
has no other permissions to be assigned, the return
role is {r5}.

r0

r5

r4 r3 r6

r1 r2

p1 p2

p3 p4 p5

r6

r7 r8

p4

Figure. 1. a simple example for the first case
The second case is to indicate that the req(i)

is a subset of permissions that can be acquired by
the external domain, but we can not find a set of
role whose permission is equal with the req(i)
exactly. In Figure. 1, if req(i)={ p1, p4}, because
PS(r6)={p4, p5}, we can not return the redundant
permissions to the external entity. The resolution is
to split the role r6. Through creating two new
junior roles r7, r8 for r6, r7 is assigned with
permission p4, while r8 is assigned with permission
p5. So the new role set {r1, r7} can satisfy the
request req(i).

The third case is more complex than the
above two. And only part of the requested
permissions can be acquired. For the request by the
req(i), the method is to return the roles which
contain the requested permissions. These roles can
be mapped by the external entity.

3.2. Request-driven Privilege Query
Algorithm

In an arbitrary hybrid hierarchy, maintaining
permission acquisition and role activation
semantics can become quite challenging. Joshi et
al. introduce the concept of uniquely activable set
(UAS) to facilitate the analysis of hybrid
hierarchies and simplify the process of
determining the activation and permission
acquisition sets [5]. A UAS is a set each element of
which is a set of roles that can be activated by a
specific user.

The UAS can be defined as an extension of
the definition in [6]:

Definition 5. Let H = (R, F) be a rooted
hybrid hierarchy. Then, UAS(H) = {Y1, Y2, …, Ym},
where ∅ ⊂ Yi ⊆ R for each i ∈{1, 2, …, m}, is
the Uniquely Activable Set (UAS) of role sets of H
if the following conditions hold:

• ∀ i, j∈ {1, 2, …, m} and i ≠ j, PS(Yi) ≠
PS(Yj), and

• ∀ Z ⊆ R s.t. Z∉UAS(H), if PS(Y) = PS(Z)
for a Y ∈ UAS(H), then (|Y| < |Z|); where |A| is
the cardinality of set A.

r0

r1 r2

r3 r4 r5 r6 p3

 p4

p6

p2 p1

p0

p5

p7

 Figure. 2. An example for algorithm of
FindMappedRole

Following the above principles, we present an
algorithm ComputeUAS that ascertain a role set
that satisfies a requested permission set req(i). In
this algorithm, the breadth first searching in the
hierarchy of the local roles ensures that the order
of the set of local roles, which is denoted as R, is
from up to down. Literature [7] proposes an
algorithm to find a role set to satisfy the external
request. But it can not ensure that its role set can
follow this principle, and it did not consider that
how the external map to these roles.

The computation of the UAS has been proofed
as NP-complete [8].We proposes a simpler
algorithm to create the role set in UAS. For an
arbitrary general role hierarchy H, we can split all
I-hierarchy (IH) from the hierarchy H. Each I-
hierarchy contains part of roles of the hierarchy H.
Based on these sub-hierarchy, we can compute the
UAS for the general hierarchy H as algorithm
ComputeUAS.

878585

Firstly, we introduce some operations:
N1 ⊗ N2={{x1∪ x2}|x1∈N1 and x2∈N2}
Analogously,
N1 ⊗ N2 ⊗ …… ⊗ Nm=

{{x1 ∪ x2 ∪ …… ∪ x2} |x1 ∈ N1, x2 ∈ N2 ……
xm∈Nm}

Assuming M= {N1, N2… Nm}, we have:
Θ M= N1 ⊗ N2 ⊗ …… ⊗ Nm

 r0

r1

r2

r3

r4

r5 r6

p3

 p4 p6

p2

p1

p0

p5

IH1 IH2 IH3

p7

Figure. 3. The decomposition of the hybrid role

hierarchy
We propose the algorithm for computing the

UAS for an arbitrary hybrid role hierarchy H as
Figure. 4. In this process, we firstly decompose the
hybrid role hierarchy into several pure I-
hierarchies. In the Example 1, we can split the
hybrid hierarchy as Figure. 2 to three I-
hierarchies:{IH1, IH2, IH3} as Figure. 3.
Comparing to the algorithm proposed in [7], we
have a simpler approach to constitute the set of
UAS. Through producing a set of roles R’ by
selecting arbitrary roles where there is no I-
hierarchy relation between them in every hierarchy
IHi, the power set of the R’ is added to the UAS of
the hierarchy H. For instance, we select {r0, r2, r3}
as R’, then the set {{r0},{r2},
{r3},{r0,r2},{r0,r3},{r2,r3},{r0,r2,r3}} is must added
to the UAS. Once we complete selecting all roles
in each hierarchy IHi, the UAS is formed.

Theorem 1. The set of the role set created by
Algorithm ComputeUAS is the UAS for the hybrid
role hierarchy.

Proof. The condition of the algorithm is that
there is a general hybrid hierarchy H, a user u is
assigned to the senior-most role SH of H. Without
loss of generality, we assume that the permissions
belong to the different role in the same I-hierarchy
is unique. So, when we producing a set of roles set
R’ by selecting arbitrary role in every I-hierarchy
IHi, the permissions of all subset of the power set
of the R’ is different. It satisfies the first condition
in the Definition 5.

Because the element in the R’ is the role set
that each role in it comes from different I-
hierarchy (it is denoted Yi in the definition 5), the
relation for “contain” does not exist among

permission set of each role in a Yi. Assuming
Yi={ri,rj}, if PS(Yi)= PS(Yj),and |Yi|>|Yj |, let us
assume Yj to be {rj},then PS(ri) ⊆ PS(rj). In
general case, if two roles belong to different I-
hierarchies respectively or if the two roles are not
the subordinate relationship in the same I-
hierarchies (such as r5 and r6), ones permissions
can not contain the other. So, it satisfies the second
condition in the Definition 5. Hence, the set of the
roles set produced by Algorithm 1 is the UAS for
the hybrid role hierarchy. □

Example 1. Consider the hybrid hierarchy
shown in Figure. 2. If we visit the tree following
the breadth first, then R= {r0, r1, r2, r3, r4, r5, r6}.
The UAS for a user assigned to r0 is:

{{r0}, {r1}, {r2}, {r3}, {r4}, {r5}, {r6}, {r0, r2},
{r0, r5}, {r0, r6}, {r1, r2}, {r1, r5}, {r1, r6}, {r2, r4},
{r4, r5}, {r4, r6},{r0, r3}, {r1, r3}, {r3, r4},{r2, r3},
{r3, r5}, {r3, r6}, {r0, r2, r3}, {r0, r3, r5}, {r0, r3,r6},
{r1, r2, r3}, {r1, r3,r5}, {r1, r3, r6}, {r2, r3, r4}, {r3,r4,
r5}, {r3,r4, r6},{r0,r5, r6},{r1,r5, r6},{r4,r5, r6},{r3,r5,
r6}}

The permission set of each role set in the UAS
are: PS({r0})={ p0,p1,p4}, PS({r1})={ p1,p4},
PS({r2})={ p2,p5,p6,p7}, PS({r3})={ p3},
PS({r4})={ p4}, PS({r5})={ p5}, PS({r6})={ p6},
PS({r0, r2})={ p0,p1, p2,p4,p5,p6,p7}, PS({r0, r5})={
p0,p1,p4, p5}, PS({r0, r6})={ p0,p1,p4, p6}, PS({r1,
r2})={ p1, p2, p4, p5,p6,p7}, PS({r1, r5})={ p1,p4, p5},
PS({r1, r6})={ p1,p4, p6}, PS({r2, r4})={ p2,
p4,p5,p6,p7}, PS({r4, r5})={ p4, p5}, PS({r4, r6})={
p4, p6}, PS({r0, r3})={ p0,p1, p3,p4}, PS({r1, r3})={
p1, p3,p4}, PS({r3, r4})={ p3,p4}, PS({r2, r3})={ p2,
p3,p5,p6,p7}, PS({r3, r5})={ p3,p5}, PS({r3, r6})={
p3,p6}, PS({r0, r2, r3})={ p0,p1, p2, p3, p4,p5,p6,p7},
PS({r0, r3, r5})={ p0,p1, p3, p4,p5}, PS({r0, r3,r6})={
p0,p1, p3, p4,p6}, PS({r1, r2, r3})={ p1, p2, p3,
p4,p5,p6,p7}, PS({r1, r3, r5})={ p1, p3,p4, p5}, PS({r1,
r3, r6})={ p1, p3,p4, p6}, PS({r2, r3, r4})={ p2, p3,
p4,p5,p6,p7}, PS({r3,r4, r5})={ p3,p4, p5}, PS({r3,r4,
r5})={ p3,p4, p6}, PS({r0,r5, r6})={ p0, p1,p4,p5, p6},
PS({r1,r5, r6})={ p1,p4,p5, p6}, PS({r4,r5,
r6})={p4,p5, p6}, PS({r3,r5, r6})={p3,p5, p6}.

The UAS supports the first case of permission
request above commendably. If req(i)= { p1,p4,
p6}, by searching through the permission set of
each role set in the UAS, we can find the minimal
role set for supporting these permissions: {r1, r6}.If
we can not find a set of local roles whose
permissions are equal with the req(i) exactly,
splitting the local role or creating the new roles is a
valid method.

888686

 Algorithm1 ComputeUAS(H)
Input: H—an arbitrary hybrid role hierarchy
Output: UAS—the UAS of the role hierarchy

H
1. initialize UAS = ∅
2. IH ←I-hierachyGeneration(H).

//IH={IH1, IH2,...... IHm},algorithm 2
3. IH’ ←No-hierachySetGeneration(IH)//

algorithm 3
4. Foreach IH’’∈2IH’ Do
5. If (|IH’’|==1) then
6. foreach r’∈IH’’ Do
7. UAS = UAS ∪ { r’}
8. else
9. UAS = UAS∪ Θ IH’’
10. Return UAS.

Algorithm2 I-hierachyGeneration(H)
Input: H—an arbitrary hybrid role hierarchy
Output: IH—all I-hierarchies from the

hierarchy H
1. initialize TempR= ∅ //the list for the

role that has been searched
2. initialize IH = ∅
3. R=Roles(H)// R is the list of all roles in

the hierarchy H
4. While R ≠ ∅ Do
5. From r start DFS Search under

I-hierachy, the roles passed are added
to the set TempR

6. when the DFS Search completed,
produce a sub- I-hierachy: IHi

7. IH= IH∪ IHi
8. R= R—TempR
9. End while
10. Return IH.

Algorithm3 No- InheritSetGeneration(IH)
Input: IH—an arbitrary hybrid role hierarchy
Output: IH’—all roles-set with out inherit

hierarchy from the I-hierarchy IH
1. initialize IH’ as the power set of the

roles in the IH
2. Foreach R’∈IH’ Do
3. if there is a inherit path between the

arbitrary roles in the set R’ then
4. IH’= IH’ —R’
5. Return IH’.

Figure.4. The algorithms of creating the UAS for a

hybrid role hierarchy
For the second case of the external request,

we can not find an exact role set in UAS to satisfy
the permissions requested. For the Example 1,
assuming the request req(i)={ p1,p4, p7}, there are
no local roles containing the permission p7 merely.
The method in this paper is to find an appropriate

role to be decomposed. The result of the
decomposition is to produce a new role to contain
the adaptive permissions for the external request.
For the instance as in the Figure.5, the roles set in
the UAS which permissions satisfy the request are:
{r0, r2}, {r1, r2}, {r0, r2, r3}, {r1, r2, r3}.Because the
set {r1, r2} owns the least permissions, and PS(r1)=
{p1,p4} ⊆ req(i), PS({r2})={p2,p5,p6,p7} ⊄ req(i),
the role r2 is the suited role to be decomposed. For
the stabilization of the UAS, we prefer to make the
selected role as the direct senior role of the new
role in each adjustment of the local hierarchy. In
this instance, we can create a new role r’,
PS(r’)={p7}. For the request is to active some local
roles to acquire the appropriate permissions, the
relationship between roles r2 and r’ is I-hierarchy.

r2

r5 r6 p6

p2

p5

p7

r2

r5 r6 p6

p2

p5

p7

r’

p7
Figure. 5. A simple example for the second case
The resolution for the third case is similar

with the second. we can split req(i) into two
subsets req1(i)and req2(i)such that req1(i)relates
to the second case and req2(i) refers to the
permission set that are not available through any
existing role.

4. Request-driven role mapping in
multi-domain environment

When the privilege query completed in the
local domain for a special external request, the
follows is to create the role mappings between the
two domains. This section is to discuss which type
of mappings is suitable for a special external
request. When the requisite roles in the local
domain are confirmed for a special request, the
mapping from the roles of the subject for the
request to these roles must be found.

4.1. The problem for the role mapping

In the Figure.6, the hierarchy of the local
domain is the same as the Example 1. The req of
the external user u is {p1, p4, p6}. Through
searching the UAS of the local domain, we can
know that the roles {r1, r6} will be mapped by the
external domain. In the external domain, the role rc
which has two A-junior roles is assigned to the
user u1. We have to select a role from rc or its
juniors to form a mapping with the local roles {r1,
r6}.

898787

When the roles in the local domain are
confirmed, the problems are as follows:

1) Which roles that assigned to the request
subject in the external domain must be the original
of the mapping to the local roles (We call them the
original roles.)?

2) Which types of mapping is to be found
between the external and the local domain. That is
to say, which hierarchy suits for the two roles
between the external and the local domain?

As we know, secure interoperation requires
enforcement of the following two principles:
autonomy principle and security principle [9]. In
this paper, the selection of the types of mappings
and the original roles is up to these principles. The
following sections are to discuss how we select the
original roles and the mapping types to avoid the
conflicts in role mappings.

r0

r1 r2

r3 r4 r5 r6 p3

 p4

p6

p2 p1

p0

p5

p7

ra

rb

rd

rc

re rf

u1
req

External Domain Local Domain
Figure.6. An example of the role mapping between two domains

4.2. Conflicts of role mapping for privilege
request

The role mapping in different domains is a
cause of the various types of conflicts and
inconsistencies. There are various conflicts

existing in role mapping among multiple domains,
such as modality conflicts, cyclic inheritance,
separation of duties (SoD)[10] and multiple
management[9].Due to the limitation of the
paper’s space, we focus on the violation of SoD for
the external requester.

r0

r1 r2

r3 r4 r5 r6p3

 p4

p6

p2 p1

p0

p5

p7

ra

rb

rd

rc

re rf

u1
req

External Domain (E) Local Domain (L)

SOD

u2

SOD
SOD

Figure. 7. An example of SoD in two domains.
SoD [10] prevents two or more subjects (roles or

users) from accessing an object that lies within their
conflict of interests or disallow a subject from
accessing conflicting objects or permissions.
Violations of SoD constraints may occur in an
interoperation policy because of the interplay of
various policy constraints across domains.

1) The role specific violation of SoD
For example, Figure. 7 shows that the roles re and

rf are the conflicting roles in the external domain. As
the role rc is assigned to the user u1, the user u1 can
activate the roles re and rf, but cannot active them
concurrently. We assume that user u1 active the roles rc
and re concurrently, that is to say, the user u1can inherit
all permissions of the role re: PS (u1) ⊇ PS (rc), PS
(u1) ⊇ PS (re). As mention above, if the user u1 request
the permission {p1, p4, p6}, the mapping must found
between the role of {rc, re, rf } to the local roles { r1, r6
}.Now, let us consider the I-mapping < rc, E, r1, L, I>.
The role rc can inherit all permissions of the role r1 in

domain L through this mapping: PS (u1) ⊇ PS (r1)
⊇ PS (r4). If there is already an I-mapping exist from
role r4 to role rf, the role rc can inherit all permissions
of the role rf through r4. PS (u1) ⊇ PS (rc) ⊇ PS (r4)
⊇ PS (rf). So, PS (u1) ⊇ (PS (re) ∪PS (rf)). Thus the
user u1 can acquire the permissions of the role rf, which
is the SoD with the role re.

Supposing denotations U and R represent the set
of users and roles in a domain respectively, the
violation of role-specific SoD can be formalized
as:{ ∃ u∈U,r1,r2∈R,SoD(r1,r2)|PS(u) ⊇ PS(r1)∪PS(r2)
}

In this case, if the user u1 request the permission
{p1, p4, p6}, and the user u1 active the roles rc and re
concurrently, we can select the role re to mapping to
the local role r1. Through the mapping < re, E, r1, L, I
>, the user u1 can acquire the permissions {p1,p4}
without the violation of SoD. Of course, the mapping
also can be an A-mapping: < re, E, r1, L, A/IA>

2) The violation of user-specific SoD

908888

For example as Figure.7 shows, the user u1 and u2
is a pair of SoD users. The role sets, which assigned to
them, are prohibited from having a common set. As
mentioned above, if the user u1 requests the permission
{p1, p4, p6}, the mapping must be founded between the
role of {rc, re, rf } and the local roles { r1, r6 }. Before
the mapping establishment, we assume that there is a
mapping < re, E, r4, L, I> between the two domains.
Now, let us consider the I-mapping < rc, E, r1, L,
I>.Through this mapping, the user u1, which is
assigned the role rc, can acquire all of the permissions
of r1: PS (u1) ⊇ PS (rc) ⊇ PS (r1). As r1 is the senior
role of r4, so the permission set of role r4 is the subset
of the one of r1. That is to say, the user u1 own a role
B6, PS (u1) ⊇ PS (r4). On the other hand, there is a
mapping from role re to role B6. As the role A6 is
assigned to the role u2, the user u2 can also access the
role r4. So the user u2 can acquire the permissions of
the role r4 in the same way: PS (u2) ⊇ PS (r4). Thus,
the conflicting users, u1 and u2, can access the same
role r4. This is a representative case of the violation of
the SoD for user-specific.

Supposing denotations U and R represent the set
of the users and roles in a domain respectively, the
violation of the SoD for the user-specific can be
formalized as:{ ∃ u1, u2∈U, ∃ r1,r2∈R | SoD(u1,u2) ∧
r1 ∈ role(u1)∧r2∈role(u2)∧Containned(r, r1)
∧Containned(r, r2)}

In this case, if the user u1 request the permission
{p1, p4, p6}, when the user u1 and u2 are a pair of SoD
users in the external domain, as considering the
condition that there is a mapping < re, E, r4, L, I> exist,
we can select an A-mapping < rc, E, r1, L, A >.
Through this mapping, the user u1 can active the local
role r1 to acquire the permissions {p1,p4}. But the user
u1 can not activate r1 and re at the same time. That is to
say, the roles r1 and re are the roles of SoD.

3) The violation of SoD for policy assignment
The SoD for policy assignment means that the

conflicting policies are prohibited from being
authorized to the same role. Generally speaking, the
violation for this type of SoD can not be caused
directly by role-mappings. For instance, as the Figure.7
shows, in the local domain, p4 and p5 are the
conflicting policies. If the external user will request the
two privileges concurrently, this request can not be
satisfied completely from the I-mapping. This type of
violation of the SoD usually arises from the I-
hierarchies and the role mapping between two
domains. We can formalize it
as:{ ∃ p1,p2∈P, ∃ r∈R,p1=< r1,PS,d >, p2=
<r2,PS,d>|SoD(p1,p2)∧
Containned(r1,r) ∧Containned(r2, r)}

We can resolve this problem through A-mapping.
If user u1 request the conflicting permissions {p4, p5},
through searching in the UAS of the local domain, we
can confirm the roles r4 and r5 are the ones to be
mapped. For the users in the external domain can not
own the permissions p4 and p5 concurrently, we can
create the A-mapping < re, E, r4, L, A> and < re, E, r5,
L, A>. Through these two mappings, the user u1 can
active the local role r4 or r5, but can not active them
concurrently.

When the conflicts occur in the interoperations,
we can choose the suitable types of mappings and
original roles to reduce or avoid the conflicts. The
principles for the selections are as follows.

i. When the violation of role-specific SoD occurs,
the appropriate way is to change the original role of
this mapping. The lowest junior roles of the external
requester are the best choices for this change.

ii. When the violation of user-specific SoD
occurs, the appropriate way is to establish the A-
mapping between the two domains, and the conflicting
users are prohibited from activating the same junior
roles in the A-hierarchy path concurrently.

iii. When the violation of policy assignment SoD
occurs, the best way is to establish the A-mappings
from external to the requested roles.

5. Related works

Time-based secure interoperation has not been
addressed by earlier models. As an important extension
of the model GTRBAC, James B.D. [11] presents
design and implementation of X-GTRBAC Admin, an
administration model that aims at enabling
administration of role-based access control (RBAC)
policies in the presence of constraints with support for
conflict resolution in a multi-domain environment.

 Several research efforts [12, 13, 14] have been
devoted to the topic of policy composition and secure
interoperation in multi-domain environment. In [9], an
integer programming approach has been proposed to
allow policy integration between multiple RBAC
policies. More relevantly, [7] has tried different
approaches to facilitate the administration of role
hierarchy by constructing the actual UAS set. While the
first approach is slightly better in terms of time
complexity, both these approaches are non-polynomial
solutions. Although our method is also non-polynomial
solution (practically, finding an UAS for a general
hybrid hierarchy is proofed as a NP-complete[8]), but
the algorithm proposed in this paper is simpler.

In [15], Shehab et al. proposed a distributed
secure interoperability protocol that ensures secure
interoperation of the multiple collaborating domains

918989

without compromising the security of collaborating
domains. In [16], the authors propose a breadth-first-
search based algorithm for policy mapping between
two loosely coupled interacting domains for sharing
resources. However, the algorithm proposed does not
do an exhausted search; instead, it creates new roles
even if there is possible a combination of roles in the
local domain that can satisfy the requested
permissions. Other earlier work related to hybrid
hierarchy that highlight its importance can be found in
[17].

There are several researches [10] concerning the
resolution of the conflicts between role-mapping.
Through our analyses and comparison, the selection for
adaptive types of role-mapping for a special external
request is a most effective method to avoid the
conflicts.

6. Conclusion and future work

In this paper, we propose a request-driven
temporal policy framework for interoperation in a
multi-domain environment. While a hybrid hierarchy is
important to make an RBAC approach generic enough
to capture very diverse set of access request as well as
to support flexible policy expression and inter-domain
policy mapping, we propose a more convenient and
effective method to complete the permission query in a
local domain. Base this method, we can return the
suitable role set for all special external privilege
requests. The role-mappings between the external and
local domains are found base this role set.

The participant roles in the mappings may have
three types of hierarchies. That is to say, when a role is
mapped by another, the one relationship of I-
hierarchies, A-hierarchies and IA- hierarchies may be
established between the two roles. For these
hierarchies, this paper proposes three catalogs of role-
mappings respectively. When the conflicts occur in the
role-mapping, we can choose a suitable type of
mapping to avoid the conflicts.

7. References

[1] R. Power, Tangled Web: Tales of Digital Crime from the

Shadows of Cyberspace. Que/Macmillan Publishing, Aug.
2000.

[2] Gang Zhao, Dong Zheng, Kefei Chen, Design of single
sign-on, E-Commerce Technology for Dynamic E-
Business. IEEE International Conference on 2004, 253-
256

[3] ITS Central Authentication Service, [EB/OL]
http://www.yale.edu/tp/cas/

[4] Joshi, J.B.D., Bertino, E., Ghafoor, A. Temporal
hierarchies and inheritance semantics for GTRBAC,
Proceedings of the seventh ACM symposium on Access
control models and technologies, Monterey, California,
USA, 2002, pp:74 - 83.

[5] Joshi, J.B.D., Bertino, E., Ghafoor, A. Temporal
hierarchies and inheritance semantics for GTRBAC,
Proceedings of the seventh ACM symposium on Access
control models and technologies, Monterey, California,
USA, 2002, pp:74 – 83.

[6] Joshi, J.B.D., Bertino, E., Ghafoor, A. Formal
Foundation for Hybrid Hierarchies in GTRBAC. ACM
Transactions on Information and System Security.
(revised submission).

[7] Chandran, S.M., Joshi, J.B.D. Towards Administration of
a Hybrid Role Hierarchy, IEEE International Conference
on Information Reuse and Integration, 2005.

[8] Siqing Du, Joshi, J.B.D. Supporting Authorization Query
and Inter-domain Role Mapping in Presence of Hybrid
Role Hierarchy, SACMAT'06, June 7-9, 2006, Lake
Tahoe, California, USA.

[9] Basit Shafiq, James B.D. Joshi, Elisa Bertino, Secure
Interoperation in a Multidomain Environment Employing
RBAC Policies, IEEE Transactions on Knowledge and
Data Engineering, vol.17,no.11,pp:1557-1577, 2005.

[10] Emil C. Lupu, Morris Sloman. Conflicts in Policy-Based
Distributed Systems Management, IEEE Transactions on
Software Engineering, vol. 25, no. 6, pp. 852-869, Nov.
1999.

[11] James B.D. Joshi. et al. X-GTRBAC Admin: A
Decentralized Administration Model for Enterprise-Wide
Access Control. ACM Transactions on Information and
System Security, vol. 8, no.4, pp. 388-423, Nov 2005

[12] Bonatti, P.A., Sapino, M. L., Subrahmanian, Merging
Heterogeneous Security Orderings.Esorics 1996,183-197.

[13] Dawson, S., Qian, S., Samarati, P. Providing Security
and Interoperation of Heterogeneous Systems.
International Journal of Distributed and Parallel Databases.
2000.

[14] Gong, L., Qian, X. Computational Issues in Secure
Interoperation. IEEE Transaction on Software and
Engineering, Vol. 22, No. 1, January 1996.

[15] Shehab, M., Bertino, E., Ghafoor, A. SERAT: Secure
Role mapping Technique for Decentralized Secure
Interoperability, In Proceedings of the ACM Symposium
on Access Control, Models and Technologies (SACMAT
05), Stockholm, Sweden, 2005.

[16] Piromruen, S., Joshi, J.B.D. An RBAC Framework for
Time Constrained Secure Interoperation in Multi-domain
Environment, IEEE Workshop on Object-oriented Real-
time Databases (WORDS-2005), 2005.

[17] Joshi, J.B.D., Bertino, E., Ghafoor, A. Temporal
hierarchies and inheritance semantics for GTRBAC,
Proceedings of the seventh ACM symposium on Access
control models and technologies, Monterey, California,
USA, 2002, pp:74 -83.

929090

