
A Logic for Authorization Provenance

Jinwei Hu†,‡ Yan Zhang‡ Ruixuan Li† Zhengding Lu†

†Intelligent and Distributing Computing Laboratory, College of Computer Science and Technology
Huazhong University of Science and Technology, Wuhan, China

‡Intelligent Systems Laboratory, School of Computing and Mathematics
University of Western Sydney, Sydney, Australia

{jwhu,rxli,zdlu}@hust.edu.cn yan@scm.uws.edu.au

ABSTRACT
In distributed environments, statements from a number of princi-
pals, besides the central trusted party, may influence the derivations
of authorization decisions. However, existing authorization logics
put few emphasis on this set of principals - authorization prove-
nance. Reasoning about provenance enables to (1) defend against
a class of attacks, (2) understand and analyze authorizations and
the status of policy bases, and (3) obtain potentially efficient log-
ging and auditing guided by provenance information. This paper
presents the design and applications of a provenance-enabled au-
thorization logic, called DBT. More specifically, we give a sound
and complete axiomatic system of DBT. We also examine a class of
provenance-aware policy bases and queries. One can syntactically
extract provenance information from the structure of these queries
if they are evaluated positively in provenance-aware policy bases.
Finally, two case studies are presented to demonstrate possible ap-
plications of DBT.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Access con-
trols; F.4.1 [Mathematical Logic and Formal Languages]: Math-
ematical Logic—Modal logic

General Terms
Security, Authorization, Provenance, Logic

Keywords
Authorization Provenance, Authorization Logic

1. INTRODUCTION
A declarative and expressive language with an unambiguous se-

mantics seems to be a promising approach to authorizations [7].
Based on this observation, major research efforts have applied log-
ics into the design of policy languages to deal with distributed au-
thorizations [1, 5, 9, 13, 16, 18]. These languages enable flexible

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS’10 April 13–16, 2010, Beijing, China.
Copyright 2010 ACM 978-1-60558-936-7/10/04 ...$10.00.

ways to specify policies, provide efficient mechanisms for evaluat-
ing queries, and lay a solid foundation for reasoning about systems’
security.

Most of existing authorization logics, however, ignore one im-
portant respect of distributed authorizations - authorization prove-
nance. Informally, an authorization provenance denotes a set of
agents whose statements are referenced in the deduction of an au-
thorization decision. In traditional centralized authorizations, a
central trusted party has the complete knowledge of requesting
users and requested resources; thus this party can make decisions
all by itself. In contrast, no such entity exists in distributed environ-
ments, and systems have to employ mechanisms like delegations to
facilitate distributed authorizations. Accordingly, besides the cen-
tral party, a number of agents (e.g., delegatees) play a role together
in making access control decisions and are responsible for autho-
rizations.

Suppose that Alice is the warden of a Building Y and that Y re-
quires that if the statement “r0 : Alice believes opendoor” can
be derived, the request to open door would be allowed. One essen-
tial insight is that existing authorization logics do not distinguish
between the following two cases where r0 is reached in different
ways.

CASE1 r1: Alice believes opendoor
CASE2 r2: Alice delegates to Bob opendoor

r3: Bob delegates to Cathy opendoor
r4: Cathy delegates to David opendoor
r5: David delegates to Emma opendoor
r6: Emma believes opendoor

Though r0 can be concluded in both cases, the reasons why Alice
believes opendoor are different. In CASE1, it is because Alice
herself, whereas Bob, Cathy, David, and Emma play a role in
CASE2.

There are several compelling reasons why it is advantageous to
distinguish the two cases above and reason about authorization
provenance. First, host security may be compromised if prove-
nance is not taken into account when making authorization deci-
sions [21, 24]. Wang et al., [24] found that users may abuse dele-
gations to circumvent security policies, if the provenance of users’
privileges are not examined. Again, in [21], authors pointed out
that, while Discretionary Access Control (DAC) models is widely
used and deployed in commodity operating systems, they fail to de-
fense against trojan horses; because existing enforcement of DAC
cannot correctly identify requests’ true origins. It is worth noting
that both the reasons and defense mechanisms of these attacks are
closely related to authorization provenance.

Second, auditing is an indispensable part of a secure system. One
objective of auditing is to identify from where security breaches

238

started . There arises a trend to include proofs of authorization de-
cisions in system logs for auditing [23]. Armed with the ability to
reason about authorization provenance, one may make more use of
logs. For example, since provenance record the agents involved,
they can help trace back to the origins of security compromises. A
log with proofs based on a provenance-enabled logic brings some
advantages [15]: (1) one may identify the approximate reasons of
an improper authorization before a detailed log analysis; (2) one
may pre-classify the log data according to provenance before au-
diting; the uncategorized log could be of large volume and thus are
likely to result in high overhead.

Third, provenance information helps enforcing and analyzing
availability and security. Putting restrictions on authorization
provenance may prevent insiders’ misuse of their privileges. Sup-
pose that the management board of Building Y is composed of Al-
ice, Bob, Cathy, and David and that it is required that whether or
not to open door be determined only by the board members. Then,
to meet the requirement, each request to open door is asked to be
accompanied with a proof of “due to Alice, Bob , Cathy, and/or
David, Alice believes opendoor” but not simply that of “Alice
believes opendoor”. In CASE2, the door would not be opened
for Emma, because Emma is an indispensable agent for the con-
clusion that “Alice believes opendoor” to be reached. Hence, the
delegation from David to Emma is actually ignored, thus prevent-
ing David’s misuse and neglect. On the other hand, the query “due
to Alice, Bob , Cathy, and/or David, Alice believes opendoor”
can also be interpreted as an availability query. Give a policy base,
this query is asking whether “Alice believes opendoor” could be
derived by the present statements from Alice, Bob , Cathy, and/or
David. If the answer is negative, this implies that these four agents
together fail to open door, according to the current policy base.

Finally, since authorization provenance is meta-information
about authorizations, explicitly representing provenance help un-
derstanding and analyzing policy bases and authorizations. Origi-
nally, the need to manage provenance arises from data and scien-
tific applications; and it attracts considerable research efforts in the
database and scientific workflow areas [8, 22]. One essential mo-
tivation there is that, the provenance of a scientific result or a data
computing result is considered as important as the result itself so
that one may analyze and evaluate properties of the result such as
trustworthiness and completeness. In distributed environments, ac-
cess control systems have to take the dynamics and flexibility into
account and thus lose partial control of who may influence autho-
rizations. Authorization provenance provides an important way to
understand how and why authorizations are deduced and to analyze
the status of policy bases.

From the above observations, we attempt to develop an autho-
rization logic which treats provenance explicitly. This logic should
build upon existing authorization logics, but with more expressive
power. One mainstream approach to authorization logics stems
from applications of propositional modal logic into policy lan-
guages, interpreting policies using the Kripke structures [1, 12].
This approach provides a formal platform to study belief, trust, au-
thorization, ect., and their interactions, whereas it lacks in efficient
query evaluation algorithms. Fortunately, to enforce policies speci-
fied in these logics, proof-carrying authorization seems to be a prac-
tical alternative [2, 3, 4, 17], coming to our rescue. In literature, a
logic BT (Belief and Trust) [20] is designed to represent belief and
trust (delegation) and their relations, which are indispensable in
distributed authorizations. Based on BT, we develop a new logic,
named DBT (Due to, Belief and Trust), which enables reasoning
about authorization provenance.

DBT extends the BT logic by introducing a new modal operator

Di for each agent i into the underlying distributed authorizations.
Diϕ is designed to express the provenance of ϕ. While DBT intro-
duces a modal operator for provenance, care is taken to preserve all
features of the BT logic for belief and trust. Thus, we integrate the
belief, trust, and provenance within a unified logical framework. In
summary, our main contributions are as follows.

• We propose a new logic, DBT, which is able to effectively
express authorization provenance. We also present a fam-
ily of axiomatic systems of DBT with increasing reasoning
power.

• We study a type of provenance-aware policy bases and
queries. If a provenance-aware query is evaluated posi-
tively against a provenance-aware policy base, one can ex-
tract provenance information of the corresponding authoriza-
tion from the syntactical structure of the query.

• Finally, we give two case studies, which exemplify DBT’s
motivations and demonstrate possible applications of DBT
in complex problem domains.

The rest of the paper is organized as follows. The logic DBT
(syntax and semantics) is introduced in Section 2, followed by pre-
sentation of the axiomatic systems in Section 3. Section 4 pro-
vides an example application of DBT. Provenance-aware policy
bases and queries are discussed in Section 5. Section 6 presents
an example application of provenance-aware policy bases. Finally,
related works and conclusions are addressed in Section 7 and 8,
respectively. Due to space limits, we only give proof sketches of
propositions and theorems in Appendix.

2. THE ACCESS CONTROL LOGIC DBT

2.1 Syntax
Consider a finite set of agentsAG = {1, · · · ,N}. We have three

types of modal operators for each agent i: Bi, Ti
j , and Di. Biϕ

means that agent i believes ϕ or that i says ϕ; and Ti
jϕ reads that

agent i trusts agent j onϕ or that i delegatesϕ to j. Diϕmeans that
“due to agent i, ϕ holds” or that i causes that ϕ holds. A subset
AE of AG is called an agent expression. Given an AE ⊆ AG, we
also define an operator DAE based on Di for each i ∈ AE. DAEϕ
means that the set AE of agents together cause ϕ. Let Prop be a
set of primitive propositions. The set WFF of well-formed formulas
(wff) is inductively defined as follows:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ⇒ ϕ |
Biϕ | Diϕ | DAEϕ | Ti

jϕ

A policy base PB is a finite subset of WFF and a query is a WFF
formula. We refer to as LOCAL the agent who enforces access con-
trol policies. For example, Building Y is LOCAL. LOCAL is the
root of trust which protects the requested resources, assembles the
policy base, and make access control decisions. When receiving
a request to access resources, LOCAL asks for the proof of a cor-
responding query; we assume that either LOCAL searches for the
proof using approaches like those in [4, 3], or LOCAL just verifies
a proof submitted by the requester, as in [2]. If the proof is found or
verified to be correct by LOCAL, then the request is permitted and
otherwise denied. The policy base is composed of the formulas
translated from LOCAL’s own policies, from credentials that other
agents sent to LOCAL, and from the credentials submitted along
with the request.

Agents issue credentials to specify their beliefs and delegations.
To ensure integrity, credentials are often signed by issuers’ private

239

keys. Credentials are interpreted by DBT formulas. For instance,
the credential that “B says that the alarm system in Building Y is
in working order” is translated as BBalarminorder. Suppose
that A delegates to B the task of checking if the alarm is in order;
we may express this delegation as TA

Balarminorder. Still, DBT
can be more expressive. The formula

DBBAalarminorder

represents that due to B, A believes that the alarm is in working or-
der. In this paper, agents could be credential issuers, principals that
request accesses, LOCAL, and other entities that may be involved
in authorization systems. We may use A, B, C, D, E, and L as a
shorthand for the agents Alice, Bob, Cathy, David, Emma, and
LOCAL, respectively.

2.2 Semantics
We define a semantics of DBT based on Kripke structures. A

Kripke structure M is a tuple 〈W,π,Bi,Di, T i
j 〉 (i, j ∈ AG; i 6=

j), where (1) W is a set of states (possible worlds), (2) π : W 7→
2Prop is a labeling function which maps each state to a subset P
of Prop such that, in this state, any p ∈ P is true and any p ∈
Prop\P is false, (3) Bi ⊆ W × W is a serial, transitive and
Euclidean binary relation on W , (4) Di ⊆ W × W is a binary
relation on W , and (5) T i

j ⊆W × 2W is a binary relation between
W and its power set.

Definition 1. (|=) Given a structure M = 〈W,π,Bi,Di, T i
j 〉,

w ∈ W , and a formula ϕ, let DAE =
T

i∈AE Di. We define the
satisfaction relation |= as follows:

1. 〈M, w〉 |= p iff p ∈ π(w),

2. 〈M, w〉 |= ¬ϕ iff 〈M, w〉 6|= ϕ,

3. 〈M, w〉 |= ϕ1 ∧ ϕ2 iff 〈M, w〉 |= ϕ1 and 〈M, w〉 |= ϕ2,

4. 〈M, w〉 |= ϕ1 ⇒ ϕ2 iff 〈M, w〉 6|= ϕ1, or 〈M, w〉 |= ϕ2,

5. 〈M, w〉 |= Biϕ iff 〈M, v〉 |= ϕ for all v such that (w, v) ∈
Bi,

6. 〈M, w〉 |= Diϕ iff 〈M, v〉 |= ϕ for all v such that (w, v) ∈
Di,

7. 〈M, w〉 |= DAEϕ iff 〈M, v〉 |=
ϕ for all v such that (w, v) ∈ DAE , and

8. 〈M, w〉 |= Ti
jϕ iff (w, dϕe) ∈ T i

j , where dϕe = {v ∈ W |
〈M, v〉 |= ϕ}.

While the first four items in the definition of |= are standard [6],
some explanations for the last four items seem necessary. From
item 5, we can see that Bi is a classical KD45 belief operator:
given that i stays in the state w, i checks the truth of ϕ in all states
v that i believes to be possible.

From the definition of Di and item 6, the operator Di is a clas-
sical K operator. The intuition of (w, v) ∈ Di (i.e., the state w
is Di-accessible to state v) is that, if agent i stays in the state w,
then i could possibly make v a reality (i.e., transform the system
in question from the state w to the state v). Diϕ holds in a state w
(i.e., 〈M, w〉 |= Diϕ) if and only if ϕ is true in all the states v that
i could possibly have taken w to. Thus, Diϕ means that i causes
ϕ to hold. Item 7 informs that DAE is an operator for a group of
agents: j ∈ AE. (w, v) ∈ DAE means that v is a state that every
agent in AE can possibly bring about at the state w.

Ti
jϕ is designed to mean that i trusts j on ϕ. As in item 8, the

semantics of Ti
jϕ is given through a neighborhood semantics: if

AXIOMS

P: all tautologies of the propositional calculus;
B1: (Biϕ ∧ Bi(ϕ⇒ ψ)) ⇒ Biψ B2: ¬Bi⊥
B3: Biϕ⇒ BiBiϕ B4: ¬Biϕ⇒ Bi¬Biϕ
D1: (Diϕ ∧ Di(ϕ⇒ ψ)) ⇒ Diψ
D2: (DAEϕ ∧ DAE(ϕ⇒ ψ)) ⇒ DAEψ
D3: DAE1ϕ⇒ DAE2ϕ, if AE1 ⊆ AE2

D4: DAEϕ⇔ Diϕ, if AE = {i}, i ∈ AG
SBT (Self-Believe Trust): BiT

i
jϕ⇔ Ti

jϕ
RULES OF INFERENCE

R1 (Modus ponens, MP): from ` ϕ and ` ϕ⇒ ψ infer ` ψ
R2 (Generalization, Gen): from ` ϕ infer ` Biϕ and ` Diϕ
R3: from ` ϕ⇔ ψ infer ` Ti

jϕ⇔ Ti
jψ

Figure 1: The axiomatic system DBT1

the truth set of ϕ (i.e., dϕe) belongs to T i
j (w), then Ti

jϕ holds
at the state w. Among others, an advantage of the neighborhood
semantics is that, it is now refutable that Ti

jϕ⇒ ¬Ti
j¬ϕ, which is

valid if the semantics of Ti
j is otherwise defined via normal possible

worlds semantics. Hence, A is able to specify TA
Balarminorder

and TA
B¬alarminorder to let B have discretion to judge if the

alarm is in working order or not.

3. THE AXIOMATIC SYSTEMS
We develop a family of axiomatic systems for DBT (i.e., DBT1,

DBT2, DBT3, and DBT4), with increasing reasoning power.
This is achieved by imposing a set of constraints on the models.
In this section, we introduce these constraints, their intuitions, and
the resulting axiomatic systems.

The basic axiom system forDBT1 is shown in Figure 1. Follow-
ing [20], DBT1 includes the axiom SBT, which means that agents
should be self aware of and believes their delegations. We believe
this is a reasonable assumption. Because credentials are signed and
issued by the agents, who should be aware of the credential con-
tents. Rules of inference and axioms except SBT in DBT1 are
standard. Because of the axiom D4, for any i ∈ AG, we write
D{i}ϕ and Diϕ interchangeably in this paper.

Let the set of Kripke models defined in Definition 1 be MP0 and
the models for DBT1 be MP1. We define MP1 = {M ∈ MP0 |
M satisfies CSBT}.

CSBT : T i
j (w) =

T
u∈Bi(w) T

i
j (u).

Example 1. DBT1 sets a basic stage for reasoning about prove-
nance. Take the Building Y for example. Suppose that we have

DABA(alarmoff⇒ opendoor) (1)
DBBAalarmoff (2)

One can derive that D{A,B}BAopendoor. That means, because of
both A and B, Building Y opens the door.

However, there is no connection among belief, trust, and prove-
nance in DBT1. Therefore, DBT1 is of limited usefulness as for
authorization provenance. To capture authorization provenance, es-
pecially those in distributed environments, we introduce some other
inference laws.

Agents may still reason about their own beliefs and trusts, even
in distributed settings. An agent can make access control decisions
based on its own knowledge. Since the agent makes no use of oth-
ers’ statements (or credentials), those decisions are due to itself.

240

Hence the following two axioms are desired:

SRB (Self-Responsible Belief): ` DiBiϕ⇔ Biϕ.

SRT (Self-Responsible Trust): ` DiT
i
jϕ⇔ Ti

jϕ.

SRB and SRT require that agents be self-responsible for their be-
liefs and delegations (trusts), respectively. In other words, the
provenance of i’s conclusions, whose deductions are independent
of all agents except i, is i itself. We refer to the logic as DBT2 =
DBT1 + SRB + SRT.

Example 2. Suppose that

BA(alarmoff⇒ opendoor)

BAalarmoff

According to DBT2, they imply that BAopendoor. That is, A
believes opendoor. Afterwards, if one wants to check who is
responsible for this authorization (e.g., for auditing), one can derive
that DABAopendoor but not that DXBAopendoor, where X is an
agent but X 6= A. Hence, that authorization is granted simply due
to A itself but nobody else.

Let MP2 denote the models for DBT2. Then MP2 = {M ∈
MP1 | M satisfies CSRB and CSRT}.

CSRB : Bi(w) = Di ◦ Bi(w).1

CSRT : T i
j (w) =

T
u∈Di(w) T

i
j (u).

Nevertheless, agents may partially depend on delegations to
make decisions in distributed authorization. Take Example 2 for
instance. A is not able to check alarmoff, but A trusts B on this
matter. Then, the door of Building Y may be opened if B presents a
credential, showing that the alarm is set off. Therefore, we need to
capture the effects of delegations. To this end, the following axioms
seem plausible.

Dlgt (Delegation): ` Ti
jϕ ∧ Bjϕ⇒ DjBiϕ

i-centric-Dlgt: ` Ti
jϕ ∧ Tj

kϕ⇒ DjTi
kϕ

Dlgt and i-centric-Dlgt make a connection among belief operator
Bi, trust operator Ti

j , and provenance operator Dj . Dlgt means that,
if agent i places trust on j about ϕ and j believes ϕ , then agent j
causes i to believe ϕ. i-centric-Dlgt chains the delegations; that is,
if as for ϕ, agent i trusts j, who in turn trusts k, then it holds that j
causes i to trust k on ϕ. By these two axioms, the trusted agent is
recorded as provenance of the derived conclusion. We refer to the
logic as DBT3 = DBT2 + Dlgt + i-centric-Dlgt.

Example 3. Example 2 continued. A believes that if the alarm
is off then the door could be opened and A also delegates to B the
judgement of alarmoff. B presents a credential to confirm that
the alarm is off.

BA(alarmoff⇒ opendoor) (3)

TA
Balarmoff (4)

BBalarmoff (5)

Then by the axiom Dlgt, from (4) and (5), it follows that (6).
And by the axioms D4 and D3, one can derive (7) and (8), from (6)
1Suppose that R ⊆ X × Y is a binary relation between X and Y .
LetR(x) be the set {y ∈ Y | (x, y) ∈ R}. AssumingQ ⊆ Y×Z ,
let R ◦Q be a binary relation between X and Z such that R ◦Q =
{(x, z) | ∃y ∈ Y : y ∈ R(x) ∧ z ∈ Q(y)}.

and (3), respectively. Finally, by applying the axioms of D2 and B1
to (7) and (8), we have (9).

DBBAalarmoff (6)
D{A,B}BAalarmoff (7)

D{A,B}BA(alarmoff⇒ opendoor) (8)
D{A,B}BAopendoor (9)

Suppose that Building Y configures the door to open if a proof
for D{A,B}BAopendoor is found or verified to be correct. Then
by the above reasoning, the door should open. Further, Y could de-
mand that, “as long as BAopendoor with the help of A herself, B,
C, and D (i.e., the board members), the door should open” by ask-
ing for a proof of D{A,B,C,D}BAopendoor, which can be obtained
by applying the axiom D3 to (9). Taken extremely, Y may ask for
a proof of DAGBAopendoor if Y does not care about authoriza-
tion provenance (i.e., no matter how A’s belief in opendoor is
gained). Recall that AG is the set of all agents involved.

Suppose that B himself could not check the alarm either and just
delegates this task to C, as represented by (10), and that (5) no
longer holds, whereas (11) is true instead.

TB
Calarmoff (10)

BCalarmoff (11)

By the axiom i-centric-Dlgt, from (4) and (10), it follows that (12).

DBTA
Calarmoff (12)

D{B,C}BAalarmoff (13)
D{A,B,C}BAopendoor (14)

By applying the axioms of SRB, D4, D3, Dlgt, and AE-Red (intro-
duced below), from (12) and (11) we obtain (13), which, together
with (3), derives (14). The derivations of (13) and (14) depend
on an axiom AE-Red. AE-Red is not included in DBT3. but in
DBT4, which will be introduced below.

By imposing the following constraints CDlgt and Ci-centric-Dlgt on
MP2, we obtain the models for DBT3, denoted as MP3. That
is, MP3 = {M ∈ MP2 | M satisfies CDlgt and Ci-centric-Dlgt}.

CDlgt : for all S ∈ T i
j (w), if Bj(w) ⊆ S, then Dj ◦ Bi(w) ⊆ S.

Ci-centric-Dlgt : T i
j (w) ∩ T j

k (w) ⊆
T

u∈Dj(w) T
i

k (u).

With DBT3, provenance is recorded in the derivations of autho-
rizations. To facilitate explorations of authorization provenance,
they are expected to meet some requirements. Here we are inter-
ested in two minimal ones.

Red: ` DiDiϕ⇒ Diϕ

AE-Red: ` DAEDAEϕ⇒ DAEϕ

With Red and AE-Red, the provenance of any formula ϕ needs not
to be repeated: if it is because of i itself that i causes ϕ holds,
then it follows that it is just because of i that ϕ holds; and this is
also the case for a group of agents AE. We refer to the logic as
DBT4 = DBT3 + Red + AE-Red.

Example 4. An instance of the axiom AE-Red is already used
in Example 3. Here we describe the derivation of the formula (13)
in Example 3. By applying the axioms of D4 and D3 to (12), we
have (15). By applying the axioms of SRB, D4 and D3 to (11), we
have (16). And then applications of D2 and Dlgt to (15) and (16)
give rise to (17), from which one can derive (18) with the axioms

241

D4 and D3. Finally, by applying an instance of AE-Red to (18), we
have (13).

D{B,C}TA
Calarmoff (15)

D{B,C}BCalarmoff (16)
D{B,C}DCBAalarmoff (17)

D{B,C}D{B,C}BCalarmoff (18)

The models of DBT4, called MP4, are a subset of MP3 which
satisfies the constrains CRed and CAE-Red. Namely, MP4 = {M ∈
MP3 | M satisfies CRed and CAE-Red}.

CRed : Di(w) ⊆ Di ◦ Di(w).

CAE-Red : DAE(w) ⊆ DAE ◦ DAE(w).

Given a Kripke structure M, we say that a formula ϕ is valid
in M, denoted by M |= ϕ, if 〈M, w〉 |= ϕ for all w ∈ W ; and
for each 1 ≤ t ≤ 4, say ϕ is valid in MPt, written MPt |= ϕ, if
ϕ is valid in all MPt models. Also, for each 1 ≤ t ≤ 4, we say
that a formula ϕ is provable in DBTt, denoted by DBTt ` ϕ, if
and only if, there is a finite sequence of χ1, · · · , χn, χn+1, such
that ϕ = χn+1, and every χl is an instance of an axiom in DBTt

or obtainable from an application of an inference rule in DBTt to
χl1 · · ·χlm , where l1, · · · , lm < l. Recall that a policy base is a
finite subset of WFF and that a query is a WFF formula. We say that
a policy base PB entails a query q wrt MPt, written PB|=MPtq, if
and only if, for all M∈ MPt and states w in M, if for all ψ ∈ PB
〈M, w〉 |= ψ then 〈M, w〉 |= q.

THEOREM 1. For each 1 ≤ t ≤ 4, the axiomatic systemDBTt

is sound and complete with respect to MPt.

COROLLARY 2. Given a policy base PB and a query q, for each
1 ≤ t ≤ 4, PB|=MPtq if and only if DBTt ` (

V
PB) ⇒ q.

4. APPLICATION: DEFENDING AGAINST
TROJAN HORSES

4.1 Background
Discretionary Access Control (DAC) is widely supported in

modern operating systems to protect systems’ resources. However,
DAC is vulnerable to trojan horses [21]. A trojan horse is a piece
of malicious software which may perform malicious actions. A
trojan-exploiting attacker can obtain accesses to resources that oth-
erwise she/he is not authorized to.

Take the scenario in Figure 2 for instance. Following denotations
in [21], we express the DAC policies as wpc(obj) = {B,C,E}
and rpc(psw) = {C,D,E}.2 B is a malicious agent in terms of
reading psw, which he is not authorized to. However, B writes a
piece of malicious code into the obj. When proc reads from obj,
the malicious code may be planted into proc and executed; then
B may take over proc as a result. Afterwards, B could perform
unauthorized accesses (e.g., to psw) via proc.

In [21], Mao et al., pointed out that the reason why DAC fails to
defend against trojan horses is that, existing enforcement of DAC
models cannot correctly identify the true origins of requests. In the
example above, when proc issues a request to read psw, the ex-
isting enforcements deem that this request is simply from C, thus
permitting proc to read psw. Unfortunately, since the malicious
code take effects, this request is due to B, who hides behind the
2wpc is short for write protection class and rpc for read protection
class. Details are referred to [21].

B obj

procpsw

write

read

read

Figure 2: A simple case where a trojan horse is planted. proc
is a process run by C, obj is an object (e.g., a file) owned by C,
and psw is a sensitive file owned by C. Relevant DAC policies
are as follows: C allows B, C and E to write to obj, and C, D,
and E to read psw.

proc. Even though B is not allowed to read psw by the DAC poli-
cies, he can actually read psw via proc.

Mao et al., proposed a model based on a notion of a contami-
nation source, which is the set of all agents. Roughly speaking,
the main idea is to associate with each object and process a set of
agents, which have ever interacted with it (e.g., read, write, or cre-
ate it); and deny the request if any member of the contamination
source of the request is not allowed to access. We call this Contam-
ination Source based Enforcement CSE [21].

Given an object or process r, let cs(r) be r’s contamination
source. For example, initially since C owns obj and C runs
proc, cs(obj) = {C} and cs(proc) = {C}. After B writes
obj, cs(obj) = {B,C}. And after proc reads obj, cs(proc) =
cs(obj)∪ cs(proc) = {B,C}; thus B ∈ cs(proc). CSE considers
every request issued by proc to be possibly from any member of
cs(proc); hence, proc’s request to read psw may originate from
B. According to the DAC policies, B is not allowed to read psw
and thus CSE would deny this request. Therefore CSE forbids B
from reading psw, even though B took over proc through the trojan
horse planted via obj.

4.2 Formalization of CSE
Using DBT, we may formalize the requesting and decision-

making parts of CSE in two steps.
Express the requests associated with contamination sources.
Given a process p with cs(p), we represent the request to perform
an action a on an object o as

Dcs(p)req(p, a, o).

For example, when proc asks for accesses to read psw, the request
is specified as D{B,C}req(proc, read, psw).
Express the DAC policies. Assume that, given an object o and its
owner u, u designates a set of users UserSet = {u1, · · · , un}who
can perform an action a on o.3 In DBT, this is expressed as

DUserSetreq(p, a, o) ⇒ grant(p, a, o).

For instance, the DAC policy rpc(psw) = {C,D,E}
can be represented as D{C,D,E}req(proc, read, psw) ⇒
grant(proc, read, psw).

Finally, each time a process p requests to perform an action a on
an object o, either p is asked to prove grant(p, a, o) or L must
find a proof for grant(p, a, o). For instance, when proc requests
to read psw, grant(proc, read, psw) needs to be proved.

Hence, when B tries to read psw in the guise of proc, the re-
quest would be declined. In contrast, if it was D who had writ-
3According to [21], there may be exceptions; we can also represent
these exceptions in DBT.

242

ten obj and requests to read psw via proc, the access would
be granted. Because D is allowed to read psw by the DAC
policies in the first place; the request would be expressed as
D{C,D}req(proc, read, psw). And by an instance of the axiom
“D3”:

D{C,D}req(proc, read, psw) ⇒ D{C,D,E}req(proc, read, psw),

it can be concluded that grant(proc, read, psw).
Actually, applications of instances of the axiom D3 play an im-

portant role in the DBT’s formalization of CSE. Supposing that S
is the origins of a request to perform a on o, the request is repre-
sented as DSreq(p, a, o). Since S ⊆ UserSet and from the in-
stance of the axiom D3: DSreq(p, a, o) ⇒ DUserSetreq(p, a, o),
the access would be granted. However, for any set S′ 6⊆ UserSet
of users who issue such a request, it would be declined.

The point of this formalization in DBT is to set a stage for CSE
techniques to interact with systems, where authorization logics are
employed to specify their policy bases. These systems also suf-
fer from trojan horses, in spite of the correct enforcement of their
policy bases. This is partially because they neglect the provenance
information of requests and thus that of authorizations. Given pol-
icy bases formalized in DBT, we may combine CSE techniques
in the hope that they can also share the merits resulting from the
notion of contamination source.

4.3 Extension
Attack. When it comes to distributed authorizations, CSE might
fail to prohibit trojan horses in presence of delegations. We ex-
tend the scenario in Figure 2. As shown in Figure 3, this time B
changes attacking strategy. Somehow B worms into the favor of E,
who (innocently) delegates the action write(obj, input) to B.4

Unfortunately, B’s plot would prevail again despite CSE’s being in
position.

Bob

Emma obj

procpsw

de
le
ga
ti
onde

ce
iv
e

write

read

read

E trusts B on writing obj,

i.e., TE
Bwrite(obj, input).

B tells E to write input into obj,

i.e., BBwrite(obj, input).

Figure 3: A trojan horse is planted with the help of delegations.

Let us explain B’s attack in some details. Recall that cs(obj) =
{C} and cs(proc) = {C} originally. Since E trusts B on writ-
ing input to obj and B tells E to do so, L at E’s side can find or
correctly verify a proof of E believing writing input to obj and
thus allows this action. Note that here the provenance of how E
obtains this belief is not counted. Then after obj is written with
input, cs(obj) = {C,E} in the light of CSE.5 Once proc reads
obj, cs(proc) = {C,E} according to CSE and the malicious code
injected in obj may be executed and B can take over proc as a re-
sult. When proc, as a puppet in B’s hand, requests to read psw,

4For example, B may offer to help E diagnose and con-
figure her computer. Consider a remote assistance scenario:
http://technet.microsoft.com/en-us/library/
bb457004.aspx.
5Here, E finishes this action through some process pr; to simplify
explanation, we assume pr’s contamination source does not make
any difference in granting read-access to psw, or we can simply
assume that cs(pr) = {E}.

CSE would permit this action because all members of cs(proc)
are allowed to read psw.

We may augment CSE with provenance information to deal with
this kind of delegation-exploiting trojan horses. We refer to this
extended CSE as ExCSE. We first assume that, if actions are per-
formed because of conclusions derived from agents’ policy bases,
L is able to syntactically check these conclusions. For example,
from DBBEwrite(obj, input), L can tell the information “due to
B, BEwrite(obj, input) holds”. The conclusions should take the
form of DAEBiϕ. When AE = {i} this means the conclusion is
the intention of i itself; otherwise it relies on delegations. The idea
is to regard AE as contamination source as well.

We show how ExCSE works by E’s example. Suppose that
L asks for a proof of DAEBEwrite(obj, input) for input to
be written to obj. After L verifies the proof, the contamina-
tion source of obj changes as cs(obj) = AE ∪ cs(obj). Since
AE = {B}, cs(obj) = {B,C,E} after input is written into obj,
and cs(proc) = {B,C,E} after proc reads obj. Hence, proc’s
request to read psw is considered to be possibly from B. And the
request can only be formulated as D{B,C,E}req(proc, read, psw),
thus would be denied.

Note that ExCSE depends on CSE to track contamination
sources. The extension lies in that ExCSE uses DBT to record
provenance information when facing with delegations and treat
provenance as contamination source. It would be awkward for
DBT to track contamination sources after, for example, processes
reads objects. However, DBT helps generalize CSE techniques to
cope with trojan horses at access control level. In summary, DBT
naturally abstracts requests so that CSE could be integrated with
logic-based policy bases. On the other hand, with the help of DBT,
ExCSE blocks another kind of trojan horse attacks in the context
of distributed authorizations.

5. PROVENANCE-AWARE POLICY
BASES

Provenance is an important means to understand the delegations
present in policy bases. However, how fine-grained provenance in-
formation is encoded depends on how policies are authored, even
though DBT is able to express provenance. Here we study a
class of provenance-aware policy bases (PaPB) and queries. With
PaPB, one can syntactically extract the provenance information
from provenance-aware queries, if they are evaluated positively
against PaPB.

Given p ∈ Prop, the set WFFpa of formulas is given by the rule

φ ::= Bip | Ti
jp

We define a mapping issuer : WFFpa 7→ AG. Given φ ∈
WFFpa, issuer[φ] = i if φ = Bip or φ = Ti

jp. issuer[φ] denotes
the agent who issues the credential corresponding to φ.

Definition 2. Given a PB ⊂ WFFpa, we may construct the del-
egation structure in PB, denoted as DS〈PB〉. DS〈PB〉 is a tuple
〈N,E, %〉, where N =

S
φ∈PB{issuer[φ]}, 〈n1, n2〉 ∈ E if and

only if Tn1
n2p ∈ PB for some p ∈ Prop, and % : E 7→ 2Prop is a

mapping defined as p ∈ %[〈n1, n2〉] if and only if Tn1
n2p ∈ PB.

Given {e0 = 〈n, n1〉, e1 = 〈n1, n2〉, · · · , el = 〈nl, n′〉} ⊆ E,
we say {e0, · · · , el} is a path (from n to n′) associated with p if
p ∈ %[e0] ∩ · · · ∩ %[el], and write 〈n, n1, · · · , nl, n′〉 for short. We
say a delegation structure DS〈·〉 = 〈N,E, %〉 is acyclic if there is
no path from n to n associated with p for any n ∈ N and p ∈ Prop.

We say PB is a Provenance aware Policy Base, denoted as PaPB,
if PB ⊂ WFFpa and DS〈PB〉 is acyclic. The requirement that

243

DS〈PB〉 be acyclic is not ambitious. Because a path from n to
n means delegations both originates from and ends at n, which im-
plies that some delegations are not necessary or make no sense.

Definition 3. (Types of queries) Given a query q =
DAEn

· · ·DAE1φ, we define the following types of queries:

1. q is an PaPB-query, if φ ∈ WFFpa,

2. q is a prov-query, if q is a PaPB-query and issuer[φ] 6∈S
1≤l≤n AEl,

3. q is a prov-aware query, if q is a prov-query and AE1 is a
singleton set (i.e., AE1 = {j1} ⊆ AG) and for 2 ≤ l ≤ n,
AEl = AEl−1 ∪ {jl} where jl ∈ AG and jl 6∈ AEl−1.

Example 5. Let the proposition p denoting opendoor, con-
sider the following queries.

q1 : DDTB
CBAp q4 : D{B,C,D}BAp

q2 : D{A,B}TA
Cp q5 : DBD{B,C}BAp

q3 : D{B,C}TA
Dp q6 : D{B,C,D}D{C,D}DDBAp

The query q1 is not a PaPB-query since TB
CBDp 6∈ WFFpa,

The query q2 is a PaPB-query, but not a prov-query because
issuer[TA

Cp] ∈ {A,B}, whereas q3 is a prov-query. Queries q4
and q5 are also prov-queries, but not prov-aware queries. Finally,
q6 is a prov-aware query.

We now present some characteristic properties of these queries.
Given a PaPB-query q = DAEn

· · ·DAE1φ, we define that, for
any 2 ≤ l ≤ n, index[AEl, q] = 1 + index[AEl−1, q] and
index[AE1, q] = 1. Supposing that q is a prov-aware query, then
index[AEl, q] = |AEl| for 1 ≤ l ≤ n, where |AEl| denotes the
cardinality of the set AEl. Denote the path 〈n1, n2, · · · , nl−1, nl〉
as path[n1, nl] and the set {n1, · · · , nl−1} as ag@path[n1, nl].
Note that nl 6∈ ag@path[n1, nl].

PROPOSITION 3. Given PaPB and a PaPB-query q =
DAEn

· · ·DAE1φ, if PaPB|=MP4q, then

• when φ is of the form Ti
jp, DS〈PaPB〉 has a path path[i, j]

from i to j associated with p satisfying the following claims;

• when φ is of the form Bip, if there exists some 1 ≤ l ≤ n
such that i 6∈ AEl and i ∈ AEt holds for all 1 ≤ t < l.
then there exists an agent j ∈ AEl such that DS〈PaPB〉 has
a path path[i, j] from i to j associated with p satisfying the
following claims.

CLAIM1 ag@path[i, j] ⊆
S

1≤t≤n AEt ∪ {i}.

CLAIM2 PaPB|=MP4DAE′
n
· · ·DAE′

1
φ, where for 1 ≤ t ≤ n,

AE′
t = AEt ∩ (ag@path[i, j] ∪ {j}).

COROLLARY 4. Given a PaPB-query q = DAEφ where
index[AE, q] = 1, if φ is of the form Ti

jp then DS〈PaPB〉 has
a path path[i, j] such that ag@path[i, j] ⊆ AE ∪ {i} and that
PaPB|=MP4DAE′φ where AE′ = AE ∩ (ag@path[i, j]\{i});
and if φ is of the form Bip and i 6∈ AE then there exists an
agent j ∈ AE such that DS〈PaPB〉 has a path path[i, j] such that
ag@path[i, j] ⊆ AE ∪ {i} and that PaPB|=MP4DAE′φ where
AE′ = AE ∩ (ag@path[i, j]\{i}).

Example 6. Consider the query q4 = D{B,C,D}BAp in Exam-
ple 5. If PaPB|=MP4q4, then for certain agent X ∈ {B,C,D},
DS〈PaPB〉 has a path path[A,X] such that ag@path[A,X] ⊆
{B,C,D}∪{A}. That is, some agents in the set {B,C,D}made A
believe p. If agents {B,C,D} should have this capability, then q4
is asking about availability and a positive answer is expected, (i.e.,
some agents in the set {B,C,D} can make A believe p). If not,
then q4 is asking about security and a negative answer is expected.
q4 serves the purpose of the query “due to A, B , C, and/or D, A

believes opendoor” in Section 1. Suppose that PaPB|=MP4q4,
we have PaPB|=MP4D{A,B,C,D}BAp by the axiom D3. On the
other hand, assume that PaPB|=MP4D{A,B,C,D}BAp. From Corol-
lary 4, we have PaPB|=MP4q4. Hence PaPB|=MP4q4 if and only if
PaPB|=MP4D{A,B,C,D}BAp.

Consider another query q7 = D{B,C,D}DCBAp. If PaPB|=MP4q7,
then DS〈PaPB〉 has a path path[A,C] such that ag@path[A,C] ⊆
{B,C,D} ∪ {C} ∪ {A}. Suppose that, actually, path[A,C] =
〈A,B,C〉. Then we have PaPB|=MP4D{B,C}DCBAp, for {B,C} =
{B,C,D} ∩ (ag@path[A,C] ∪ {C}).

PROPOSITION 5. Given a prov-query q = DAEn
· · ·DAE1φ

and PaPB, if PaPB|=MP4q then for all 1 ≤ l ≤ n, index[AEl, q] ≤
|AEl|.

Take q5 = DBD{B,C}BAp for instance. It follows that
PaPB6|=MP4q5 from Proposition 5.

THEOREM 6. Given PaPB and a set of distinct agents
{n, n1, · · · , nl, n′}, the following claims are equivalent:

1. DS〈PaPB〉 has a path 〈n, n1, · · · , nl, n′〉 associated with p.

2. PaPB|=MP4D{n1,··· ,nl}· · ·D{nl−1,nl}Dnl
Tn

n′p.

3. If Bn′p ∈ PaPB then
PaPB|=MP4D{n1,··· ,nl,n′}· · ·D{nl,n′}Dn′Bnp.

Consider the prov-aware query q6 = D{B,C,D}D{C,D}DDBAp
in Example 5. If PaPB|=MP4q6, from Theorem 6 it follows that
DS〈PaPB〉 has a path 〈A,B,C,D〉 associated with p.

To generalize the above-mentioned results, we relax the limita-
tions put on PaPB. Let PO be the set of all policies defined as
below.

policy ::= rule | fact
rule ::= cond ⇒ head

head ::= Bip | Ti
jp

cond ::= fact | cond ∧ cond
fact ::= p | Ti

jp | Bi(fact)

Given a finite policy base PB such that PB ⊂ PO, we define the
set head(PB) = {h | (c1 ∧ · · · ∧ cn ⇒ h) ∈ PB}; let fact(PB)
be the set of facts in PB and factr(PB) = {f ∈ fact(PB) | f ∈
WFFpa}. Let DS〈PB〉 be DS〈head(PB) ∪ factr(PB)〉. We refer
to a finite policy base PB as ePaPB (extended Provenance aware
Policy Bases) if PB ⊂ PO and DS〈PB〉 is acyclic. Given ePaPB,
let activehead(ePaPB) = {h ∈ head(ePaPB) | ePaPB|=MP4h}.

THEOREM 7. Given ePaPB, let ePaPB′ =
activehead(ePaPB) ∪ factr(ePaPB). For a PaPB-query q,
ePaPB′|=MP4q if and only if ePaPB|=MP4q.

As corollaries, the results analogous to Propositions 3 and The-
orem 6 can be derived with respect to ePaPB. The intuition is two-
fold. First of all, the difference between ePaPB and PaPB does not

244

affect how provenance information is collected. And, on the other
hand, PaPB-queries and subclasses thereof concern mostly about
provenance.

As a subset of WFFpa, PaPB is still quite expressive. PaPB can
be seen as a simplified version of the language used in [4, 3]. Be-
sides, a subset of WFFpa can be considered as a BT system [20].
As pointed out in [20], “The system BT is useful in modeling a
set of cooperative agents in which each agent has unlimited access
to other agents’ knowledge base.” In this work, this reasoning is
restricted to a policy base which is constructed from agents’ state-
ments. ePaPB, as an extension of PaPB, is more expressive.

6. APPLICATION: SECURITY OF DEL-
EGATION IN LOGIC-BASED POLICY
BASES

Wang et al., [24] found that users may circumvent security poli-
cies in access control systems using delegations. Here is an illus-
trative example from [24].

In a company, the task of issuing checks is modeled
by two authorizations pre and app, which stand for
“check preparation” and “approval”, respectively. In
order to prevent fraudulent transactions, pre and app
must be performed by two different members of the
role Treasurer (Tr for short). Also, for the sake of re-
siliency, the company allows a Treasurer to delegate
his/her role to a Clerk (Cl for short) in case he/she is
not able to work due to sickness or some other rea-
sons. A is a Treasurer and B is a Clerk of the com-
pany. They decided to collude to issue checks for
themselves.

As noted in [24], A and B are able to issue checks for themselves,
through the following actions: (A1) A delegates the role Treasurer
to B; (A2) B performs pre to prepare a check for A; and (A3) A
performs app to approve the check prepared by B.

ePaPB is expressive enough to capture this situation as follows.

InRole(A,Tr) ⇒ TL
Apre(check) (19)

InRole(A,Tr) ⇒ TL
Aapp(check) (20)„

InRole(A,Tr) ∧ InRole(B,Cl)
∧ BLTA

BInRole(B,Tr)

«
⇒ TA

Bpre(check) (21)

InRole(A,Tr), InRole(B,Cl) (22)

BLTA
BInRole(B,Tr), BBpre(check), BAapp(check) (23)

Note that in (21), the formula BLTA
Bpre(check) means that L re-

ceives the corresponding credential, verifies the issuers’ signature,
and thus believes that A does delegate the role Tr to B.

We make queries: q1 = D{A,B}DBBLpre(check), q2 =
DBBLpre(check), q3 = D{A,B}BLpre(check), and q4 =
DABLapp(check). We have ePaPB|=MP4q1, which means that the
reason why BLpre(check) holds is because L delegates the per-
mission pre(check) to A, who further re-delegates to B and B
says he wants to prepare the check. One may only concern about
whether it is only B who makes the request to prepare the check and
causes the authorization reached. Then from ePaPB6|=MP4q2 and
ePaPB|=MP4q3, we can conclude the authorization BLpre(check)
is not only due to B but also A. And since ePaPB|=MP4q4, A herself
is also responsible for BLapp(check).

One can utilize provenance of the authorizations to enforce the
security of delegations. For instance, informed of that pre’s prove-
nance is {A,B} and app’s provenance is {A}, L should detect that

the check would be issued simply by one Treasurer A and thus
forbid either step. Hence, L is able to defend against provenance-
related breaches by checking the authorization provenance.

The security problem with respect to delegation also bothers
logic based policy bases. Owing to the unambiguous semantics
and formal reasoning ability, logic-based policy bases are common
in many distribute systems . These systems range from grid to vir-
tual enterprises. Thus it is important to work out a mechanism to
protect these systems from this security problem.

Wang et al., proposed a Source-based Enforcement Mechanism
(SEM) [24]. While effective and efficient in the context of work-
flows, SEM may fail to live up to expectations of systems where
authorization logics are used. First of all, SEM could not work
with authorization logics. And, on the other hand, it is not clear
how SEM can deal with re-delegation.

We generalize SEM techniques and call this Extended SEM
(ExSEM). Consider a conference paper review process in Figure
4. Suppose that a conference conf assigns the task of reviewing a
paper to two PC member, pc1 and pc2. Accidentally, they both
delegates their permissions (i.e., comment1 and comment2, re-
spectively) to a reviewer rv. rv then re-delegates comment1 and
comment2 to another two reviewers, rv1 and rv2, respectively.
This could be regarded as a security threat, since rv has too much
control over the result of the paper.

conf

pc1

pc2

rv

rv1

rv2

Tconf
pc1 comment1 Tconf

pc2 comment2

Tpc1
rv comment1 Tpc2

rv comment2
Trv

rv1comment1 Trv
rv2comment2

policy base: ePaPBconf

: delegation

Figure 4: Delegations for reviewing a paper.

When rv1 and rv2 submits comment1 and comment2, respec-
tively (i.e., Brv1comment1 and Brv2comment2), we have

ePaPBconf |=MP4 D{pc1,rv,rv1}D{rv,rv1}Drv1Bconfcomment1.

ePaPBconf |=MP4 D{pc2,rv,rv2}D{rv,rv2}Drv2Bconfcomment2.

Hence, we could reverse the delegation stories, just as in Figure 4.
When conf finds that both rv1 and rv2 are selected by rv, conf may
doubt about the justices of the comments and take the provenance
of comments into account when making decisions. Generally, var-
ious constraints can be checked on provenance and one may evalu-
ate provenance-related properties.

In summary, ExSEM follows the ideas of SEM and general-
izes them to the logic-based policy bases. Logic-based policy bases
are widely employed in distributed systems. However, SEM itself
falls short in this aspect. In ExSEM, DBT can express sources of
privileges (as provenance information) and various PaPB-queries
can be posed against ePaPB. When a proof of an authorization is
presented, ExSEM uses DBT to collect authorization provenance
information. This provenance is later checked against various con-
strains, as in SEM. On the other hand, ExSEM still depends on
SEM to verify the relations among the users involved in the prove-
nance and the user who actually requests privileges.

7. RELATED WORKS
DBT builds upon the logic BT [20]. While BT deals with be-

liefs and trusts, DBT unifies beliefs, trusts and provenance. DBT is

245

strictly more expressive than BT. Given a rule base RBBT consist-
ing of only BT formulas and a BT query QBT , we construct a DBT
rule base RBDBT = {DAG(f) | f ∈ RBBT }, and a DBT query
QDBT = DAG(QBT), where AG is the set of all agents involved
in RBBT . It can be shown that BT `

V
RBBT ⇒ QBT if and

only if DBT4 `
V

RBDBT ⇒ QDBT . The reason we explore
the idea of authorization provenance on BT is that BT supports
modular extension because of neighborhood semantics chosen for
the trust operator.

Existing access control logics put few emphases on authoriza-
tion provenance. Roughly, we divide them into modal-logic-based
and non-modal-logic-based. The modal-logic-based group works
around the treatment of the operators of “says” (i.e. believes) and
“speak-for” and related properties. Take the logic ABLP [1] for
instance. While DBT can express beliefs and delegations, ABLP
logic is still more expressive than DBT in terms of authorizations.
However, there is no operator designed to capture authorization
provenance, which is the focus of DBT. Since they are interpreted
in the same framework as DBT, it seems feasible to extend ABLP
logic to express provenance or to build a new logic on them. One
may define operators for provenance and impose some reasonable
relations among modalities.

The non-modal-logic-based line includes FAF [14], Binder [9],
SecPAL [5], DL [18], and RT [19], to name a few. In general, these
languages achieve a balance between the expressiveness and com-
putational tractability. Nevertheless, none of these policy languages
focuses on what the operator Di is designed to capture.

Still, some notions similar to provenance is proposed in litera-
ture. SD3 [16] produces a proof tree along with the answer to each
query. The proof tree is used to checked the correctness of the
proof. One can not ask if a conclusion with a specific provenance
is true in SD3 policy bases. RT0 [19] forms delegation chains for a
policy base. Since its focus is on how to store and retrieve creden-
tials in a distribute way, it can hardly answer queries about prove-
nance. For example, suppose that both “B causes A to believe a fact
f” and “C causes A to believe f” are true. RT0 only handles queries
of “A believes f”, without telling the difference of B and C. SecPAL
supports several bounded delegations such as depth-bounded dele-
gations and width bounded delegation [5]. These bounded delega-
tion is effective for prohibiting delegation with certain provenance
from taking effects. However, SecPAL could not specify formulas
that include provenance, thus losing the advantages of reasoning
about provenance.

Though mechanisms CSE [21] and SEM [24] proposed by Mao
et al., and Wang et al., respectively, defend against attacks result-
ing from neglect of provenance, they fall short when working with
logic-based policy bases. Nevertheless, the approaches in this pa-
per rely on CSE and SEM to tracing the contamination source or
verify relationships among agents appearing in provenance.

Vaughan et al. motivated and presented a framework to log
proofs of authorizations for auditing [23]. While detailed analy-
sis of these logs may help detect flaws in complex authorization
policies, an implicit assumption is made that the whole proof of
an authorization be available to logging. However, under certain
circumstances, it appears demanding, for the whole proof may be
at the third party, difficult to obtain, or refused to be accessed for
privacy reasons. An entry of the conclusion encapsulating both
authorization and its provenance is easier to ship and store. The
provenance-enabled conclusions also provide useful information
for analyzing improper authorizations.

8. CONCLUSION
We have presented the motivations, design, and applications of

a provenance-enabled authorization logic, DBT. DBT extends the
BT logic mostly by introducing the operator Di, and integrates be-
liefs, trusts, and provenance in a unified framework. DBT achieves
some benefits: (1) defense against a type of delegation-exploiting
attacks at the access control level, (2) understanding and analysis
of authorizations and the status of policy bases, and (3) potentially
efficient auditing guided by provenance information.

There are several avenues for future work. Since the operator
of “speak-for” plays an important role distributed authorizations,
we are in the process of extending DBT to capture the provenance
when working with “speak-for”. In addition, the notion of role
is useful for authorization, we also plan to support provenance in
presence of roles in authorization logics.

Acknowledgment
This work is supported by National Natural Science Founda-
tion of China under Grant 60873225, 60773191, 70771043, Na-
tional High Technology Research and Development Program of
China under Grant 2007AA01Z403, Natural Science Foundation
of Hubei Province under Grant 2009CDB298, Open Foundation
of State Key Laboratory of Software Engineering under Grant
SKLSE20080718, and Innovation Fund of Huazhong University of
Science and Technology under Grant Q2009021. This project is
supported in part by an Australian Research Council (ARC) Dis-
covery Projects Grant (DP0988396). We thank the anonymous re-
viewers for their helpful comments.

9. REFERENCES
[1] M. Abadi, M. Burrows, B. W. Lampson, and G. D. Plotkin.

A calculus for access control in distributed systems. ACM
Trans. Program. Lang. Syst., 15:706–734, 1993.

[2] A. W. Appel and E. W. Felten. Proof-carrying authentication.
In ACM Conference on Computer and Communications
Security, pages 52–62, 1999.

[3] L. Bauer, S. Garriss, and M. K. Reiter. Distributed proving in
access-control systems. In IEEE Symposium on Security and
Privacy, pages 81–95, 2005.

[4] L. Bauer, S. Garriss, and M. K. Reiter. Efficient proving for
practical distributed access-control systems. In ESORICS,
pages 19–37, 2007.

[5] M. Y. Becker, C. Fournet, and A. D. Gordon. Design and
semantics of a decentralized authorization language. In CSF,
pages 3–15, 2007.

[6] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic.
Cambridge University Press, 2001.

[7] P. Bonatti and P. Samarati. Logics for authorizations and
security. In J. Chomicki, R. van der Meyden, and G. Saake,
editors, Logics for Emerging Applications of Databases.
Springer-Verlag, 2003.

[8] S. B. Davidson and J. Freire. Provenance and scientific
workflows: challenges and opportunities. In Proceedings of
the 2008 ACM SIGMOD international conference on
Management of data, pages 1345–1350, 2008.

[9] J. DeTreville. Binder, a logic-based security language. In
IEEE Symposium on Security and Privacy, pages 105–113,
2002.

[10] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi.
Reasoning about Knowledge. MIT Press, 1995.

[11] R. Fagin, J. Y. Halpern, and M. Y. Vardi. What can machines
know? on the properties of knowledge in distributed systems.
In Journal of the ACM, volume 39, pages 328–376, 1992.

246

[12] D. Garg and M. Abadi. A modal deconstruction of access
control logics. In Foundations of Software Science and
Computation Structures, pages 216–230, 2008.

[13] J. Y. Halpern and V. Weissman. Using first-order logic to
reason about policies. In IEEE Computer Security
Foundations Symposium, pages 187–201, 2003.

[14] S. Jajodia, P. Samarati, M. L. Sapino, and V. S.
Subrahmanian. Flexible support for multiple access control
policies. ACM Trans. Database Syst., 26(2):214–260, 2001.

[15] X. Jiang, A. Walters, D. Xu, E. H. Spafford, F. Buchholz, and
Y.-M. Wang. Provenance-aware tracing ofworm break-in and
contaminations: A process coloring approach. In ICDCS,
page 38, 2006.

[16] T. Jim. SD3: A trust management system with certified
evaluation. In IEEE Symposium on Security and Privacy,
pages 106–115, 2001.

[17] C. Lesniewski-Laas, B. Ford, J. Strauss, R. Morris, and M. F.
Kaashoek. Alpaca: extensible authorization for distributed
services. In 14th ACM conference on Computer and
communications security, pages 432–444, 2007.

[18] N. Li, B. N. Grosof, and J. Feigenbaum. Delegation logic: A
logic-based approach to distributed authorization. ACM
Trans. Inf. Syst. Secur., 6(1):128–171, 2003.

[19] N. Li, W. H. Winsborough, and J. C. Mitchell. Distributed
credential chain discovery in trust management. Journal of
Computer Security, 11(1):35–86, Feb. 2003.

[20] C.-J. Liau. Belief, information acquisition, and trust in
multi-agent systems - a modal logic formulation. Artificial
Intelligence, 149:31–60, 2003.

[21] Z. Mao, N. Li, H. Chen, and X. Jiang. Trojan horse resistant
discretionary access control. In SACMAT, 2009.

[22] W. C. Tan. Provenance in databases: Past, current, and
future. IEEE Data Eng. Bull., 30(4):3–12, 2007.

[23] J. A. Vaughan, L. Jia, K. Mazurak, and S. Zdancewic.
Evidence-based audit. In 22nd IEEE Computer Security
Foundations Symposium, pages 177–191, 2008.

[24] Q. Wang, N. Li, and H. Chen. On the security of delegation
in access control systems. In ESORICS, pages 317–332,
2008.

APPENDIX
A. PROOF SKETCH OF THEOREM 1

We prove for the case where t = 4, i.e., with respect to MP4 and DBT4. It
is straightforward to check that the axioms in DBT4 (Figure 1) are valid, and that
the inference rules also preserve the validity. We proceeds to the proof of complete-
ness. To prove the completeness, we use the canonical model method [6], while some
techniques used in [10, 11, 20] are also borrowed.

A wff ϕ is DBT4-consistent if its negation ¬ϕ can not be proved in DBT4. A
finite set {ϕ1, · · · , ϕn} of wff is DBT4-consistent if ϕ1 ∧ · · · ∧ ϕn is DBT4-
consistent, and an infinite set of formulas is DBT4-consistent if all of its finite sub-
sets are DBT4-consistent. A set V of wff is a maximal DBT4-consistent set if it
is DBT4-consistent and for all wff ϕ not in V the set V ∪ {ϕ} is not DBT4-
consistent. On the other hand, ϕ is satisfiable iff there is a model M in MP4 and a
world w such that 〈M, w〉 |= ϕ.

A canonical structure M∗ is a tuple 〈W,π,Bi,Di, T i
j ,DAE〉 (i, j ∈

AG, i 6= j) where (2) W = {wV | V is a maximalDBT4-consistent set.}
(2) π : W 7→ 2Prop is defined as π(wV) = {p ∈ Prop | p ∈ V }.
(3) Bi(wV , wU) iff V/Bi ⊆ U , where V/Bi = {ϕ | Biϕ ∈ V }. (4)
Di(wV , wU) iff V/Di ⊆ U , where V/Di = {ϕ | Diϕ ∈ V }. (5)
DAE(wV , wU) iff V/DAE ⊆ U , where V/DAE = {ϕ | DAEϕ ∈ V }.
And (6) T i

j (wV) = {LϕM | Ti
jϕ ∈ V }, where LϕM = {wU ∈ W | ϕ ∈ U}.

Let M be an MP4 model. Define 〈M∗, w〉 |= ϕ just as 〈M, w〉 |= ϕ in
definition 1, except that 〈M∗, w〉 |= DAEϕ iff 〈M∗, w′〉 |= ϕ for all w′ such
that (w,w′) ∈ DAE . It can be shown that everyDBT4-consistent wff is satisfiable
inM∗. We first prove this fact, and then transformM∗ to an MP4 modelM] such
that 〈M∗, w〉 |= ϕ iff there exists a possible world w] such that 〈M], w]〉 |= ϕ.

We now prove that, for any wff ϕ and any maximal DBT4-consistent set V ,

〈M∗, sV 〉 |= ϕ iff ϕ ∈ V by induction on the structure of ϕ. We only show the
case where ϕ is Ti

jψ for example. First assume 〈M∗, sV 〉 |= Ti
jψ. Then by the

definition of |=, we have dψe ∈ T i
j (sV). That is, the set {sU | 〈M∗, sU 〉 |=

ψ} ∈ T i
j (sV). It follows that, by induction hypothesis, {sU | ψ ∈ U} ∈

T i
j (sV); that is, LψM ∈ T i

j (sV). According to the definition of T i
j in M∗, there

exists φ such that Ti
jφ ∈ V and LψM = LφM. Then we have DBT4 ` ψ ⇔ φ.

For suppose otherwise. Either ¬ψ ∧ φ or ψ ∧ ¬φ is DBT4-consistent; therefore
there exists a maximal DBT4-consistent set containing either ψ or φ, but not both.
It follows that LψM 6= LφM, leading to a contradiction. Since DBT4 ` ψ ⇔ φ,
DBT4 ` Ti

jψ ⇔ Ti
jφ holds. And from Ti

jφ ∈ V , we have Ti
jψ ∈ V , i.e.,

ϕ ∈ V . For the other direction, assume that Ti
jψ ∈ V . Then LψM ∈ T i

j (sV),
from which, by the induction hypothesis, it follows that dψe ∈ T i

j (sV). Hence,
〈M∗, sV 〉 |= Ti

jψ.
Next, we can prove that Bi is a serial, transitive and Euclidean binary relation.

We now verify that M∗ satisfies the constraints from CSBT to CAE-Red. We only
show the case CSRB: Bi(w) = Di ◦ Bi(w) for example. First, we show that
Di ◦ Bi(sV) ⊆ Bi(sV). Suppose that sU ∈ Di ◦ Bi(sV); then there is a state
sY such that (sV , sY) ∈ Di and (sY , sU) ∈ Bi. For any Biϕ ∈ V , by axiom
SRB, we have DiBiϕ ∈ V . Since V/Di ⊆ Y , Biϕ ∈ Y and, in turn, ϕ ∈ U .
Hence, V/Bi ⊆ U ; sU ∈ Bi(sV) holds.

We now show Bi(sV) ⊆ Di ◦ Bi(sV). Assume that sU ∈ Bi(sV), i.e.,
V/Bi ⊆ U . Define V/DiBi as the set {ϕ | DiBiϕ ∈ V }. For any DiBiϕ ∈ V ,
from the axiom SRB and V being a maximalDBT4-consistent set, Biϕ ∈ V . Then
from the assumption, it follows thatϕ ∈ U , i.e., V/DiBi ⊆ U . We have to show that
there is a maximalDBT4-consistent set Y such thatDi(sV , sY) andBi(sY , sU).
If the set ∆, {φ | Diφ ∈ V } ∪ {¬Bi¬ψ | ψ ∈ U}, is consistent, we could
obtain such a Y by extending ∆. Suppose that Y is a maximal DBT4-consistent
set containing ∆; then since for any Diφ ∈ V φ ∈ Y , we have V/Di ⊆ Y .
We can also show that Y/Bi ⊆ U . Suppose for the sake of contradiction that there
exists some Biϕ ∈ Y but ϕ 6∈ U . Then, ¬ϕ ∈ U , from the construction of ∆,
it follows that ¬Biϕ ∈ Y , a contradiction with the assumption Biϕ ∈ Y . Hence,
Di(sV , sY) and Bi(sY , sU) hold.

So all we need to do is to verify that ∆ is consistent. Suppose for the sake of
contradiction that ∆ is not consistent. Then there exist φ1, · · · , φm, ψ1, · · · , ψn

such that DBT4 ` (φ1 ∧ · · · ∧ φm ∧ ¬Bi¬ψ1 ∧ · · · ∧ Bi¬ψn) ⇒ ⊥. Let
φ̂ be φ1 ∧ · · · ∧ φm and ψ̂ be ψ1 ∧ · · · ∧ ψn. Note that ψ̂ ∈ U . Then we
have DBT4 ` ¬Bi¬ψ̂ ⇒ ¬Bi¬ψ1 ∧ · · · ∧ Bi¬ψn, from which it follows that
DBT4 ` φ̂ ∧ ¬Bi¬ψ̂ ⇒ ⊥. So DBT4 ` φ̂ ⇒ Bi¬ψ̂; by axiom D1 and
rule R2, DBT4 ` Diφ̂ ⇒ DiBi¬ψ̂. Since Diφ1, · · · ,Diφm ∈ V , we have
Diφ̂ ∈ V , from which DiBi¬ψ̂ ∈ V can be derived. And we have shown that
{ϕ | DiBiϕ ∈ V } ⊆ U . Hence, ¬ψ̂ ∈ U . However, ψ̂ ∈ U also holds, a
contradiction with U being a maximalDBT4-consistent set.

We now transformM∗ into an MP4 model through an intermediate Kripke struc-
ture. Before doing this, we introduce some useful notions [11].

Given a Kripke structure Mo = 〈W o, πo,Bo
i ,D

o
i , T

i
j

o〉 (i, j ∈
{1, · · · ,m} and i 6= j) and s, t ∈ W o, we say a sequence
〈v1, i1, v2, i2, · · · , ik−1, vk〉 where k ≥ 1 is a D-path from s to t if (1) v1 = s,
(2) vk = t, (3) v1, · · · , vk are states, (4) i1, · · · , ik−1 are agents, and (5)
(vl, vl+1) ∈ Do

il
, for 1 ≤ l < k. A D-path 〈v1, i1, v2, i2, · · · , ik−1, vk〉

is reduced if il 6= il+1 for 1 ≤ l < k. We say that a structure Mo is D-tree-like
if whenever s and t are states of Mo, then there is at most one D-path from s to t in
M∗.

We now construct a model M = {W,π,Bi,Di, T i
j ,DAE} from M∗ =

〈W,π,Bi,Di, T i
j ,DAE〉. Let L1 = W . Assuming Lk has been defined, for

each s ∈ W , each v ∈ Lk , and each l (l may be an agent i or AE), we define a
new state zs,v,l, and refer to zs,v,l as an l-child of v. Lk+1 consists of all these
states zs,v,l. Then let W =

S
{Lk | k ≥ 1}. Define g : W 7→ W by

letting g(s) = s if s ∈ L1, and g(zs,v,l) = s for zs,v,l ∈ Lk where k ≥ 2.
Define π, Bi, T i

j , Di, and DAE , respectively, as follows: (1) π(s) = π(g(s))

(2) (s, t) ∈ Bi iff (g(s), g(t)) ∈ Bi; (3) (s,Wt) ∈ T i
j iff (g(s),W g

t) ∈ T i
j

where W g
t = {g(t) | t ∈ Wt}; (4) define Di by letting (s, t) ∈ Di iff t is an i-

child of s and (g(s), g(t)) ∈ Di; (5) defineDAE by letting (s, t) ∈ DAE iff t is
an AE-child of s and (g(s), g(t)) ∈ DAE . As shown in [11],M is D-tree-like, and
〈M, s〉 |= ϕ iff 〈M∗, g(s)〉 |= ϕ when ϕ does not take the form of ϕ = Biψ or
ϕ = Ti

jψ. We can also show that it is also the case when ϕ = Biψ or ϕ = Ti
jψ.

Put together,M is D-tree-like, and 〈M, s〉 |= ϕ iff 〈M∗, g(s)〉 |= ϕ.
Based on the structure M = {W,π,Bi,Di, T i

j ,DAE}, we can obtain an

MP4 model M] = 〈W], π],Bi]
,Di]

, T i
j]
〉 by letting (1) W] be W , (2) π] be

π, (3) Bi]
be Bi, (4) Di]

be Di ∪ DAE , and (5) T i
j]

be T i
j . As shown in [11], it

can be proved that 〈M, s〉 |= ϕ iff 〈M], s〉 |= ϕ, when ϕ does not take the form
of Biψ or Ti

jψ. However, for the cases where ϕ is Biψ or Ti
jψ, since Bi]

= Bi

and T i
j]

= T i
j , this conclusion holds as well.

From the construction of M], it is not hard to see that each Bi]
is a serial, tran-

247

sitive and Euclidean binary relation. Since 〈M∗, g(s)〉 |= ϕ iff 〈M, s〉 |= ϕ iff
〈M], s〉 |= ϕ, andM∗ satisfies all the constraints fromCSRT toCAE-Red,M] also
satisfies these constraints. For example, suppose, for the sake of contradiction, that
M] does not comply with CDlgt. Then there is a state s such that 〈M], s〉 |= Ti

jϕ,
〈M], s〉 |= Bjϕ, but 〈M], s〉 6|= DjBiϕ. It follows that 〈M∗, g(s)〉 |= Ti

jϕ,
〈M∗, g(s)〉 |= Bjϕ, but 〈M∗, g(s)〉 6|= DjBiϕ. However, since M∗ obeys
CDlgt, 〈M∗, g(s)〉 |= Ti

jϕ ∧ Bjϕ ⇒ DjBiϕ, a contraction. For CAE-Red to
hold, it requires that Di ∩ Dj = ∅ for any i 6= j. This is because in this case

DAE]
= (by definition)

T
i∈AE Di]

= DAE . Suppose, for the sake of contra-

diction, that (s, t) ∈ Di ∩Dj . Then according to the definitions ofDi andDj , t is
both the i-child and j-child of s. Then i = j, a contradiction. Hence,M] is an MP4
model. This completes the proof.

B. PROOF SKETCHES IN SECTION 5
From Corollary 2, in this appendix, we write DBT4 ` (

V
PaPB ⇒ φ) and

PaPB|=MP4φ interchangeably. We only prove the case where φ is of the form Ti
jp;

the proof for the case where φ is of the form Bip is similar. When proving by induc-
tion, we omit the base case because it is quite obvious.

Proof Sketch of Proposition 3.
The first claim is obvious because all delegatees are recorded in provenance. We

prove the second claim by induction on the length h of the proof of PaPB|=MP4q.
Base Case: h = 2. Since the proof is of two lines, the instances of axioms

used are simply SRT and i-centric-Dlgt. In the case of SRT, assuming that DiTi
jp

is derived, i ∈ ag@path[i, j]. And for the case of i-centric-Dlgt, assuming that
DkTi

jp, k ∈ ag@path[i, j], because of h = 2.
Course-of-values inductive step: Assume that the proof has length h + 1 and the

statement is true for all numbers less than h + 1. We enumerate all the cases how
PaPB|=MP4q can be concluded.
Case SRT. Since AE = {i} ⊆ ag@path[i, j] and from the induction hypothesis,
the statement holds.
Case D3. Suppose that an instance of D3 is applied to
PaPB|=MP4DAEn

· · ·D
ÃEl

· · ·DAE1
Ti

jp at step h + 1. From the induc-

tion hypothesis, it holds that PaPB|=MP4D
AE′n

· · ·D
ÃEl

′ · · ·DAE′1
Ti

jp. By the

instance of D3: D
ÃEl

′ϕ ⇒ D
ÃEl

′∪(AEl∩(ag@path[i,j]∪{j}))
ϕ, one obtains

PaPB|=MP4D
AE′n

· · ·D
AE′

l
· · ·D

AE′1
Ti

jp.

Case AE-Red. Suppose that an instance of AE-Red is applied to
PaPB|=MP4DAEn

· · ·DAEl
DAEl

· · ·DAE1
Ti

jp. From the induction hypothesis,

PaPB|=MP4D
AE′n

· · ·D
AE′

l
D

AE′
l
· · ·D

AE′1
Ti

jp. Then by applying the same in-

stance, we have PaPB|=MP4D
AE′n

· · ·D
AE′

l
· · ·D

AE′1
Ti

jp.

Case i-centric-Dlgt. Suppose the axiom is applied to
PaPB|=MP4DAEn

· · ·DAE2
(Ti

nl
p ∧ Tnl

j p). Note that in this case AE1 = {nl}.

Then it holds at the step less than h that PaPB|=MP4DAEn
· · ·DAE2

Ti
nl
p

and PaPB|=MP4DAEn
· · ·DAE2

Tnl
j p. From the inductive hypothesis,

we have PaPB|=MP4D
AEn

· · ·D
AE2

Ti
nl
p, where AEt = AEt ∩

(ag@path[i, nl] ∪ {nl}) for 2 ≤ t ≤ n and PaPB|=MP4DAEn
· · ·DAE2

Tnl
j p,

where AEt = AEt ∩ (ag@path[nl, j] ∪ {j}) for 2 ≤ t ≤ n.
It follows that PaPB|=MP4D

AEn∪AEn
· · ·D

AE2∪AE2
Ti

nl
p ∧ Tnl

j p

by applying the axiom D3. By the axiom i-centric-Dlgt, we have
PaPB|=MP4D

AEn∪AEn
· · ·D

AE2∪AE2
D{nl}

Ti
jp. For 2 ≤ t ≤ n,

from the construction of AEt and AEt, it holds that AEt ∪ AEt =
AEt ∩ (ag@path[i, j] ∪ {j}). In addition, nl ∈ ag@path[i, j]. Hence,
the statement is true when the length of the prove is h+ 1.

Proof Sketch of Proposition 5.
We prove by induction on the length h of the proof of PaPB|=MP4q.
Base Case: h = 2. Since PaPB consists only of formulas Bip1 and Tj

kp2, the
derivation of PaPB|=MP4q are reached by an application of the axiom i-centric-Dlgt.
However, the application of the axiom i-centric-Dlgt leads to PaPB|=MP4DkTi

jp. We
have index[{k}, q] ≤ |{k}| = 1. The reason why SRT is not applied is that q is a
prov-query (i.e., issuer[φ] = i 6∈ prov[q]).

Course-of-values inductive step: Assume that the proof has length h + 1 and the
statement is true for all numbers less than h+ 1.
Case D3. Suppose that an instance of D3: D

AE′
l
· · ·DAE1

φ ⇒

DAEl
· · ·DAE1

φ where AE′
l ⊆ AEl is applied to PaPB|=MP4ϕ, where ϕ =

DAEn
· · ·D

AE′
l
· · ·DAE1

φ. From the induction hypothesis, index[AEt, ϕ] ≤

|AEt| for 1 ≤ t ≤ n but t 6= l, and index[AE′
l, ϕ] ≤ |AE′

l|. However, since
AE′

l ⊆ AEl, index[AEl, q] = index[AE′
l, ϕ] ≤ |AE′

l| ≤ |AEl|. In addition,
for 1 ≤ t ≤ n but t 6= l, index[AEt, q] = index[AEt, ϕ] ≤ |AEt|.

Case AE-Red. Suppose that an instance of AE-Red: DAEl
DAEl

· · ·DAE1
φ ⇒

DAEl
· · ·DAE1

φ is applied to PaPB|=MP4ϕ, where ϕ =

DAEn
· · ·DAEl

DAEl
· · ·DAE1

φ. From the induction hypothesis,
index[AEt] ≤ |AEt| for 1 ≤ t ≤ n. However, for, 1 ≤ t ≤ n, either
index[AEt, q] ≤ index[AEt, ϕ] or index[AEt, q] = index[AEt, ϕ]; in both
cases, index[AEt, q] ≤ |AEt|.
Case i-centric-Dlgt. For an instance of i-centric-Dlgt to be applied, there
is some step at the length less then h + 1 in the proof such that
PaPB|=MP4DAEn

· · ·DAE2
(Ti

jp ∧ Tj
kp). So, PaPB|=MP4DAEn

· · ·DAE2
Ti

jp

and PaPB|=MP4DAEn
· · ·DAE2

Tj
kp holds at some step of length less than h + 1.

Denote ϕ1 = DAEn
· · ·DAE2

Ti
jp and ϕ2 = DAEn

· · ·DAE2
Tj

kp. From the
induction hypothesis, for 2 ≤ t ≤ n, index[AEt, ϕ1] = index[AEt, ϕ2] ≤
|AEt|. If index[AEt, ϕ1] = index[AEt, ϕ2] < |AEt| for 2 ≤ t ≤ n,
then the statement is true when the proof is of length h + 1. This is because
index[AEt, q] = index[AEt, ϕ1] + 1 ≤ |AEt| and index[AE1, q] =
index[{nl}, q] = |{nl}| = 1.

Now assume that for some t such that 2 ≤ t ≤ n, we
have index[AEt, ϕ1] = index[AEt, ϕ2] = |AEt|. Let ϕ1 be
DAEn

· · ·D
AEt

· · ·DAE2
Ti

jp, where AEt = AEt ∩ (ag@path[i, j] ∪
{j}), and ϕ2 be DAEn

· · ·DAEt
· · ·DAE2

Ti
jp, where AEt = AEt ∩

(ag@path[j, k] ∪ {k}) From Proposition 3, PaPB|=MP4ϕ1, and PaPB|=MP4ϕ2.
We can prove their proofs are of length no greater than h. From the inductive hy-
pothesis, index[AEt, ϕ1] ≤ |AEt|. However, we have index[AEt, ϕ1] =
index[AEt, ϕ1]. From the assumption |AEt| = index[AEt, ϕ1]. That is,
|AEt| = index[AEt, ϕ1] = index[AEt, ϕ1] ≤ |AEt|. Thus, |AEt| ≤
|AEt|. SinceAEt ⊆ AEt, |AEt| 6< |AEt|. Hence |AEt| = |AEt|. However,
asAEt ⊆ AEt,AEt ⊆ AEt,AEt∩AEt 6= ∅, andAEt 6= ∅, we obtain a con-
tradiction. As a result, it holds that index[AEt, ϕ1] = index[AEt, ϕ2] < |AEt|
for 2 ≤ t ≤ n. The reason why SRT is not applied at the step h + 1 is The reason
why SRT is not applied is that q is a prov-query (i.e., issuer[φ] = i 6∈ prov[q]).
Thus the statement is true when the proof is of length h+ 1.

Proof Sketch of Theorem6.
(Claim 2 implies Claim 1.) We prove that all prov-aware queries satisfying
PaPB|=MP4D{n1,··· ,nl}

· · ·Dnl
Tn

n′p also result in Claim 1. Note that l can be any
natural number such that 1 ≤ l. Since we prove for all the prov-aware queries that
satisfies Claim 2, we also prove for all prov-aware queries of any l in Claim 2. We
show that the Claim 2 implies Claim 1 by induction on the length of the proof for
PaPB|=MP4D{n1,··· ,nl}

· · ·Dnl
Tn

n′p. Assume the length of the proof is h.
Base case: h = 2. Since the proof consists only of two lines, it must hold that l =

1. Suppose that PaPB|=MP4Dn1
Tn

n′p. We enumerate all the cases that give rise to

PaPB|=MP4Dn1
Tn

n′p. As PaPB is composed of formulas like Bip1 and Tj
kp2, there

are two possibilities how PaPB|=MP4Dn1
Tn

n′p can be concluded. The first possibility
is to apply an instance of the axiom SRT: Tn

n′p⇔ DnTn
n′p to PaPB|=MP4Tn

n′p. The
other is to apply an instance of the axiom i-centric-Dlgt: Tn

n1
p ∧ Tn1

n′ p ⇒ Dn1
Tn

n′p

to PaPB|=MP4Tn
n1
p ∧ Tn1

n′ p. However, the fact n 6= n1 rules out the first one. As a
result, it is the second possibility that actually takes place. Since PaPB|=MP4Tn

n1
p ∧

Tn1
n′ p appears in the first line of the proof, one can determine that {Tn

n1
p, Tn1

n′ p} ⊆
PaPB. Hence, from the definition of paths, Claim 1 holds.

Course-of-values inductive step. Assume that the proof is of length h + 1, and
that Claim 2 implies Claim 1 for all the proof of length less than h. We now show
it is also the case for the proof of length h + 1. We follow the same idea as in
the base case. That is to enumerate all the cases that could lead to the conclusion
PaPB|=MP4D{n1,··· ,nl}

· · ·Dnl
Tn

n′p.
Case D3. The conclusion is reached by an application of an instance of the axiom
D3: DAE1

ϕ ⇒ DAE2
ϕ where AE1 ⊂ AE2. Suppose the instance is ap-

plied to PaPB|=MP4q1 to obtain PaPB|=MP4q2. If q1 is prov-aware, then q2 must
be non-prov-aware. Assuming q1 is non-prov-aware, q2 can not be a prov-aware
simply by an application of an instance of D3 to PaPB|=MP4q1. By Proposition 5,
index[AE1, q1] ≤ |AE1|. In addition, index[AE1, q1] = index[AE2, q2] and
AE1 ⊂ AE2; hence, index[AE2, q2] < |AE2|. However,
Case AE-Red. Denote D{n1,··· ,nl}

· · ·D{nt,··· ,nl}
D{nt,··· ,nl}

· · ·Dnl
Tn

n′p as
ϕ. Suppose an instance of AE-Red: D{nt,··· ,nl}

D{nt,··· ,nl}
· · ·Dnl

Tn
n′p ⇒

D{nt,··· ,nl}
· · ·Dnl

Tn
n′p to PaPB|=MP4ϕ to obtain

D{n1,··· ,nl}
· · ·D{nt,··· ,nl}

· · ·Dnl
Tn

n′p. Since there are twice appearances
of the set {nt, · · · , nl}; we denote the former one as AEfo and the latter one
as AEla. Since q is prov-aware, index[{nt, · · · , nl}, q] = t − l + 1. And,
index[AEfo, ϕ] = index[AEla, ϕ] + 1 = index[{nt, · · · , nl}, q] + 1 =
t − l + 2 ≥ |AEfo|. This is a contradiction to the Proposition 5. Hence,
PaPB|=MP4q cannot be concluded by an application of the AE-Red.
Case i-centric-Dlgt. Suppose PaPB|=MP4q is obtained by an application of i-
centric-Dlgt to PaPB|=MP4DAEt

· · ·DAE1
(Tn

nv
p ∧ Tnv

n′ p), for certain v such
that 1 ≤ v ≤ l. Then at some previous step in the proof we have

248

PaPB|=MP4DAEt
· · ·DAE1

Tn
nv
p. Denote DAEt

· · ·DAE1
Tn

nv
p as ϕ. By Propo-

sition 3, we have PaPB|=MP4D
AEt

· · ·D
AE1

Tn
nv
p, where AEu = AEu ∩

ag@path[n, nv], for 1 ≤ u ≤ t. Denote D
AEt

· · ·D
AE1

Tn
nv
p as ϕ. Note that

index[AEt, ϕ] = index[AEt, ϕ]. By Proposition 5, we have index[AEt, ϕ] ≤
|AEt|. Since AEt ⊆ ag@path[n, nv], |AEt| ≤ v (note that nv 6∈
ag@path[n, nv]) . However, since q is prov-aware, n 6∈ AEt and thus n 6∈ AEt.
So, |AEt| ≤ v − 1. Hence index[AEt, ϕ] ≤ v − 1.

Note that index[AEt, q] = index[AEt, ϕ] + 1. Therefore, index[AEt, q] ≤
v. However, From the condition in Claim 2, index[{nl, · · · , n1}, q] = l. Thus,
v = l. Hence, for q to be prov-aware, an instance of i-centric-Dlgt is applied to
D{nl,··· ,n1}

· · ·D{nl,nl−1}
(Tn

nl
p ∧ Tnl

n′p). And, at some steps prior to h,

D{nl,··· ,n1}
· · ·D{nl,nl−1}

Tn
nl
p (24)

D{nl,··· ,n1}
· · ·D{nl,nl−1}

Tnl
n′p (25)

By Proposition 3, from (24), we have D{nl−1,··· ,n1}
· · ·Dnl−1

Tn
nl
p. Note the

length of this proof is less than h. This is because nl 6∈ ag@path[n, nl]. From the
inductive hypothesis, DS〈PaPB〉 has a path {〈n, n1〉, 〈n1, n2〉, · · · , 〈nl−1, nl〉}
associated with p. Also by Proposition 3, from (25), we have D{nl}

· · ·D{nl}
Tnl

n′p,

because ag@path[nl, n′] = {nl}. Suppose otherwise that nu ∈ ag@path[nl, n′]
for certain u such that 1 ≤ u ≤ l − 1. Then there is a path from nl to nu associ-
ated with p. However, DS〈PaPB〉 has a path {〈n, n1〉, 〈n1, n2〉, · · · , 〈nl−1, nl〉}
associated with p; a contradiction with the fact the PaPB is acyclic. Therefore, by
repeating instances of the axiom SRT: Dnl

Tnl
n′p ⇔ Tnl

n′p, we have Tnl
n′p. Ac-

cording to the definition of paths, one can conclude that DS〈PaPB〉 has a path
{〈n, n1〉, 〈n1, n2〉, · · · , 〈nl, n′〉} associated with p.
(Claim 3 implies Claim 2.) Denote D{n1,··· ,nl,n′}· · ·D{nl,n′}Dn′Bnp

as q. Suppose that PaPB|=MP4q is obtained by an application of
the axiom Dlgt to PaPB|=MP4DAEt

· · ·DAE1
(Tn

nv
p ∧ Bnv

p). Then
PaPB|=MP4DAEt

· · ·DAE1
Tn

nv
p holds at some previous step. Let ϕ denote

DAEt
· · ·DAE1

Tn
nv
p. By Proposition 3, there is a path from n to nv associated

with p. By Proposition 5, index[AEt, ϕ] ≤ |AEt| = |ag@path[n, nv]| − 1 (for
{n} 6⊂ AEt as q is a prov-query.). Since index[{n1 · · · , nl, n′}, q] = l + 1 and

index[{n1 · · · , nl, n′}, q] = index[AEt, ϕ] + 1, it holds that index[AEt, ϕ] =
l. Hence, l ≤ |ag@path[n, nv]| − 1, i.e., |ag@path[n, nv]| ≥ l + 1. Since
|ag@path[n, nv]| 6> l + 1 (for there are l + 2 nodes all together and the ending
node of a path does not belong to the set of agents in the path.), it follows that
|ag@path[n, nv]| = l + 1. Therefore, nv can only be n′.

To obtain PaPB|=MP4q by applying the instance of the axiom Dlgt:
Tn

n′p ∧ Bn′p ⇒ Dn′Bnp to PaPB|=MP4DAEt
· · ·DAE1

(Tn
n′p ∧ Bn′p),

ϕ must be D{n1,··· ,nl,n′}· · ·Dnl,n′Tn
n′p. Thus

PaPB|=MP4D{n1,··· ,nl,n′}· · ·D{nl,n′}Tn
n′p. By Proposition 3, we have

PaPB|=MP4D{n1,··· ,nl}
· · ·D{nl}

Tn
n′p, because n′ 6∈ ag@path[n, n′].

(Claim 1 implies Claim 3.) Obvious according to the definitions and the axioms.

Proof Sketch of Theorem 7.
It is obvious that if ePaPB′|=MP4q then ePaPB|=MP4q. We now prove that if

ePaPB|=MP4q then ePaPB′|=MP4q. Suppose, for the sake of contradiction, that
ePaPB|=MP4q but ePaPB′ 6|=MP4q. Then there exists a set MSP ⊆ ePaPB such
that MSP|=MP4q and for any MSP′ ⊂ MSP it holds that MSP′ 6|=MP4q. MSP is
short for Maximal Subset of Policies. We enumerate the differences that give rise
to MSP|=MP4q but ePaPB′ 6|=MP4q.

(1) Suppose that there exists certain rules (c1 ∧ · · · ∧ cn ⇒ h) ∈ MSP but h 6∈
ePaPB′ (i.e., h 6∈ activehead(ePaPB)). Since the proof of MSP|=MP4q makes use
of the rule (c1∧· · ·∧cn ⇒ h), MSP|=MP4h. Otherwise, according to the structure
of q, this rule would not be used in the proof. However, as h 6∈ activehead(ePaPB),
ePaPB6|=MP4h; a contradiction. (2) Suppose that MSP|=MP4ψ where ψ of the form
BiBjp or BiTj

kp
′. If ψ is only used to derive h from the rule (c1 ∧ · · · ∧ cn ⇒

h), then ePaPB′ should contain h for h ∈ activehead(ePaPB); and, as a result,
ePaPB′|=MP4q, a contradiction. Otherwise, an application of axioms is applied to
ψ. However, the formulas derived from ψ by axioms and rules of inference are of
the forms Biψ1 ∧ ψ2 or BiDAEn

· · ·DAE1
φ. According to the structure of q and

the construction of ePaPB, ψ would not be used in the proof. Then ePaPB′|=MP4q
should have held, a contradiction. (3) Suppose that p0 ∈ MSP where p0 ∈ Prop.
In compliance with the structure of q and the construction of ePaPB, p0 can only be
used to derive h from the rule (c1 ∧ · · · ∧ cn ⇒ h). In this case, however, ePaPB′

should contain h for h ∈ activehead(ePaPB); a contradiction would be reached.
Therefore, if MSP|=MP4q then ePaPB′|=MP4q. From the definition of MSP, it

follows that if ePaPB|=MP4q then ePaPB′|=MP4q.

249

