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SUMMARY

The principle of least privilege in role-based access control (RBAC) is an important
area of research. There are two crucial issues related to it: the specification and the
enforcement. We believe that existing least privilege specification schemes are not
comprehensive enough and few of the enforcement methods are likely to scale well. In
this paper, we formally define the basic principle of least privilege and present different
variations, called the 𝛿-approx principle of least privilege and the minimizing-approx
principle of least privilege. Since there may be more than one result to enforce the
same principle of least privilege, we introduce the notation about weights of permission
and role to optimize the results. Then we prove that all least privilege problems are
NP-complete. As an important contribution of the paper, we show the principle of least
privilege problem can be reduced to minimal cost set covering (MCSC) problem. We can
borrow the existing solutions of MCSC to solve the principle of least privilege problems.
Finally, different algorithms are designed to solve the proposed least privilege problems.
Experiments on performance study prove the superiority of our algorithms.
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1. INTRODUCTION

Role-based access control (RBAC) [1] is the most popular access control model at present, and
is widely used as an alternative to the traditional discretionary access control (DAC) and the
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mandatory access control (MAC) in enterprise security management products. In RBAC, a set
of permissions are assigned to users through roles. This change on how to assign the permissions
often reduces the complexity of access control because the number of users is generally much
larger than that of roles in an organization. The most distinctive and important feature of
the RBAC is the desire to specify and enforce enterprise-specific security policies in a way
that maps naturally to an organization’s structure [2]. Its emphasis on controlling who has
access to operations on what objects is fundamentally different from information flow security
in multi-level secure systems, and therefore can support three well-known security principles:
least privilege, separation of duties and data abstraction [3].

The principle of least privilege is one of the most important principles in the design of
protection mechanisms for secure computer systems [4]. Whenever possible, a user should be
given no more access to resources than it is required to complete the task at hand. In other
words, the computer system should be able to determine the minimum set of privileges required
for the user to perform the task and guarantee that the user is only granted those privileges
and no more. Chen and Jason [5] proposed a set covering optimization method to enforce the
principle of least privilege under a family of simple RBAC models. In [6], Schneider developed
the principle of least privilege in connection with devising security enforcement mechanisms
for systems structured in terms of base and a set of extensions which augment the functionality
of that base. Li et al. [7, 8] provided a method to enforce the principle of least privilege in
multi-domain environments.

While solving the basic principle of least privilege problem, the goal is to identify the minimal
set of roles whose permissions exactly equal to the requested permissions set. However, in real
systems there may not be such a situation for the requested permissions set. Let us assume that
the requested permissions set 𝑅𝑄 = {𝑝1, 𝑝2, 𝑝3, 𝑝4}, 𝑎𝑢𝑡ℎ 𝑝𝑒𝑟𝑚𝑠(𝑟1) = {𝑝1, 𝑝2} (permissions
𝑝1, 𝑝2 belong to role 𝑟1), 𝑎𝑢𝑡ℎ 𝑝𝑒𝑟𝑚𝑠(𝑟2) = {𝑝3, 𝑝4, 𝑝5} (permissions 𝑝3, 𝑝4, 𝑝5 belong to role
𝑟2), 𝑎𝑢𝑡ℎ 𝑝𝑒𝑟𝑚𝑠(𝑟3) = {𝑝1, 𝑝2, 𝑝3} (𝑟3 has the permissions 𝑝1, 𝑝2 and 𝑝3). In this situation,
there is no minimal set of roles whose permissions exactly equal to the requested permission
set 𝑅𝑄. However, if we allow a slight redundant permissions rather than the exactly requested
permissions, it may still be acceptable. For example, in this situation we can give the redundant
permission 𝑝5 to the user. It is this variation of the principle of least privilege that we recognize
as the 𝛿-approx principle of least privilege. Moreover, there may be a cardinality constraint or
other constraints on the roles which belong to one user [9, 10]. In this situation, there also may
not generate the role set that the union permissions belong to these roles exactly equal to the
requested permissions set. This discrepancy is recognized as the minimizing-approx principle
of least privilege. For example, each user have not more than limit(r) roles, however there may
not be limit(r) roles’ permissions that exactly equal to the requested permissions set.

Furthermore, since more than one role set may satisfy the different principle of least privilege
problems. For example, role set {r1, r2} and {r3, r4} both enforce the principle of least privilege
for the same requested permission set RQ, how can we assess the difference between them?
which is the better result for the administrator to choose? In this context, we introduce the
notation about the weight of permission and role to optimize these problems. In practice, the
weight of permission is a value attached to a permission representing its importance. Depending
on the domain, there could be any variable ranging from the types of operations to the types
of objects. For example, the permission “read” of the patient’s personal information may be
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SPECIFYING AND ENFORCING THE PRINCIPLE OF LEAST PRIVILEGE IN RBAC 3

more important than the permission “write” to the patient’s personal information. This is
because the “read” permission usually leads to more information leakage. In another case, the
permission “write” to the students’ achievement may be more significant that the permission
“read” of the students’ achievement. Hence we will choose the result with lesser weight if there
are more than one role set to enforce the same principle of least privilege.

In this paper, we present a unified definition to describe the basic principle of least privilege
problem and show that the decision version of the problem is NP-complete. We also consider
several interesting variations of the basic principle of least privilege problem, including the
𝛿-approx principle of least privilege and the minimizing-approx principles of least privilege
problem. These are of practical importance while both the 𝛿-approx principle of least privilege
and the minimizing-approx principle of least privilege are likely to result in more permissions
than the basic principle of least privilege. Furthermore, we introduce the notion about the
weight of permission and role to optimize the results of the least privilege problems.

We have discovered that the basic principle of least privilege problem is identical to the
minimal cost set covering (MCSC) problem [11]. This fact allows us to directly adopt many
heuristic solutions and tools developed for the MCSC problem to solve the basic principle of
least privilege problem. Although the MCSC solutions are applicable to any domain of interest,
in this paper, we present the MCSC problem in a least privilege context in order to enforce
the basic principle of least privilege problem. And we also propose different algorithms to solve
the variants of the basic principle of least privilege problem. The experiments are carried out
to evaluate the performance of our algorithms and the results prove its superiority.

The rest of this paper is organized as follows. Section 2 reviews the RBAC model and
some preliminary definitions employed in this paper. Section 3 defines the basic principle of
least privilege as well as its variants. Section 4 analyzes the computational complexity of
the proposed variant principles of least privilege problems. In Section 5, we map the basic
principle of least privilege problem to the minimal cost set covering problem and give different
algorithms to solve its variants. The performance of all the algorithms is presented in Section
6. Finally, Section 7 provides some insights into our ongoing and future work.

2. PRELIMINARIES

We develop the material in this paper in the context of RBAC 96, the most widely known
role-based access control model [1] (it consists of RBAC0, RBAC1, RBAC2 and RBAC3, the
last two of which incorporate separation of duty constraints. For the sake of simplicity, we do
not consider sessions in this paper).

Definition 1.(RBAC Model) The RBAC model has the following components:

∙ U,R,P, users, roles and permissions respectively;
∙ PA ⊆ P× R, a many-to-many mapping of permission to role assignments;
∙ UA ⊆ U× R, a many-to-many user to role assignment relationships;
∙ 𝑎𝑢𝑡ℎ 𝑝𝑒𝑟𝑚(R) = {p ∈ 𝑃 ∣(p,R) ∈ PA}, a set of permissions that a role has.

We can use a m × n binary matrix M to describe the relationships between roles and
permissions where m is the number of roles and n is the number of permissions. The element
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M {i,j}=1 denotes that the ith role has the j th permission or the j th permission belongs
to the ith role. In this situation, each row indicates an n-dimensional role vector and also
indicates what permissions belong to the role. We can use 𝑟𝑖 (i=1,...m) to indicate the ith
role, 𝑝𝑗 (j=1,...n) to indicate the j th permission. We can give some operations to n-dimensional
boolean role vector as follows.

Definition 2.(N-dimensional Boolean Role Vector Substraction Operator) An n-
dimensional boolean role vector substraction operation between n-dimensional boolean role
vector A ∈ {0, 1}𝑛 and B ∈ {0, 1}𝑛 is A− B = C where C is in space Z𝑛 (where Z is integer)
and

cj = aj − bj (j = 1, ...n)

Definition 3.(N-dimensional Boolean Role Vector Logical OR Operator) An n-
dimensional boolean role vector logical OR operation between n-dimensional boolean role
vector A ∈ {0, 1}𝑛 and B ∈ {0, 1}𝑛 is A∣∣B = C where C is in space {0, 1}𝑛 and

cj = aj∣bj (j = 1, ...n)

So

r1 ∪ r2 ∪ ... ∪ rk = (M{1, 1}∣...∣M{k, 1},M{1, 2}∣...∣M{k, 2}, ...M{1,n}∣...∣M{k,n})
where k ∈ N and 1 ≤ k ≤ m .

Definition 4. (𝐿1-Metric)The distance metric between n-dimensional boolean role vector
A ∈ {0, 1}𝑛 and B ∈ {0, 1}𝑛 is defined as

∥ A− B ∥1=
𝑛∑

𝑗=1

∣𝑎𝑗 − 𝑏𝑗 ∣

The 𝐿1-Metric can be used to count the difference between two n-dimensional boolean role
vectors-i.e., to figure out how good an approximation one is of the other. When the 𝐿1-Metric
is 0, the two n-dimensional boolean role vectors are identical.

We now introduce the notion of 𝛿-consistency between the role set r1
∪
r2

∪
...

∪
r𝑘 (each

role in R) and the requested permissions set RQ ⊆ P (we use an n-dimensional boolean vector
Q to describe the requested permissions set RQ , where qj = 1 if pj ∈ RQ or qj = 0 if pj ∕∈ RQ
(j=1,...n)). And we also give a definition about redundancy permissions.

Definition 5.(𝛿-Consistency)Given a set of roles r1, r2...rk and a set of requested
permissions RQ, r1

∪
r2

∪
...

∪
r𝑘 is 𝛿-consistency with RQ if and only if

∥ r1
∪

r2
∪

...
∪

r𝑘 −Q ∥1≤ 𝛿

Definition 6.(Redundancy Permissions)Given a set of roles r1, r2...rk and a set of
requested permissions RQ, the redundancy permissions about r1, r2...rk to RQ is defined as

RP(r1, r2...rk;RQ) = {p ∈
k∪

i=1

auth perm(ri)∣p ∕∈ RQ}

In practice, the weight of permission is a value attached to a permission representing its
importance. We denote it as 𝜔𝑝. Depending on the domain, there could be any variable ranging
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from the types of operations to the types of objects. In other words, the weight of permission
is a function of selected weighting attributes therefore denoted as 𝜔𝑝 = 𝑓(𝑎1, 𝑎2, ...𝑎𝑛) (where
𝑎𝑖 (i=1,...n) is the selected weighting attributes). For the sake of simplicity, we can define the
weight of permission as follows.

Definition 7.(Weight of Permission)The weight of permission 𝑝𝑖 is defined as

𝑤𝑝𝑖 = 𝛼× 𝑓1(𝑢𝑎) + 𝛽 × 𝑓2(𝑜𝑝𝑎) + 𝛾 × 𝑓3(𝑜𝑏𝑎) + 𝛿 × 𝑤0

where 𝜔0 is the initial weight of permission 𝑝𝑖 preset by the system based on the knowledge
of comprehensive effect of all factors on permission 𝑝𝑖, 𝑓1(𝑢𝑎) describes the effect of the user’s
attributes on the weight of permission, 𝑓2(𝑜𝑝𝑎) describes the effect of the operation’s attributes
on the weight of permission and 𝑓3(𝑜𝑏𝑎) describes the effect of the object’s attributes on the
weight of permission; 𝛼, 𝛽, 𝛾 and 𝛿 are parameters used to adjust the relative importance about
the weight of permission 𝑝𝑖 corresponding to each attribute. If we have no prior knowledge
of the initial weight, we can set 𝛿 to 0. The idea behind the definition based on the theory
described in [12].

We assign a real number 𝜔𝑝𝑖 ∈ [0, 1] to 𝑝𝑖 for each permission 𝑝𝑖 ∈ 𝑃 (i=1,...n), which we
call the weight of permission that can be calculated by the Definition 7. Since the role is a set
of permissions, we must define weights for all roles. This can be done as follows.

For any ri ∈ R (i=1,...m), suppose auth perm(ri) = {p1, p2, ...pk}, where pj ∈ P (j = 1, ...k),
we define the weight of ri as follows.

Definition 8.(Weight of role)The weight of role 𝑟𝑖 is defined as

𝜔ri = F(𝜔p1
, 𝜔p2

, ..., 𝜔pk
) where F : Rk → [0, 1]

Hence we can get the definition about the weight of redundancy permissions and the weight
of role set.

Definition 9. (Weight of Redundancy Permissions) Given a set of roles r1, r2...rk, a
set of requested permissions RQ and a set of weight 𝜔pj

for each permission pj ∈ P (j=1,...n),
the weight of redundancy permissions about r1, r2...rk to RQ is defined as

WRP(r1, r2, ...rk;RQ) = {F′(𝜔pj
)∣pj ∈ RP(r1, r2, ...rk;RQ)} where F′ : R∣RP∣ → [0, 1]

Definition 10. (Weight of Role Set) Given a set of roles r1, r2...rk and a set of weight
𝜔ri (i=1,...k) for each role, the weight of role set about r1, r2...rk is defined as

WRS{r1, r2, ...rk} =
∑k

i=1 𝜔ri

k

3. The Basic Principle of Least Privilege and Its Variants

In this section, we give formal definition for the basic principle of least privilege and its variants
respectively.
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3.1. The Basic Principle of Least Privilege

The basic principle of least privilege provides a protection for the security computer systems
which ensures that a user should be given no more access to resources than is required to
complete the task at hand. So we formally present the definition of the basic principle of least
privilege as follows.

Definition 11. (The Basic Principle of Least Privilege(BLP)) Given a set of
requested permissions RQ, find the minimal number set of roles k such that r1

∪
r2

∪
...
∪
rk

0-consistency with RQ.

Given the requested permissions set RQ, we have to find the minimal number set of roles
that can exactly cover all of the permissions in the requested permissions set RQ. However,
the results of minimal number set of roles may not be only one set. That is, there may have
several sets r1, r2...rk such that r1

∪
r2

∪
...

∪
rk 0-consistency with RQ and all k is minimal.

While more than one set of roles may all enforce the basic principle of least privilege for the
same requested permissions set, they may have different weights.

Definition 12. Let 𝒞1 and 𝒞2 be two sets of roles that both enforce the basic principle of
least privilege for the same requested permissions set. We say that the weight of 𝒞1 is at least
as big as that of 𝒞2 (denoted by 𝒞1 ર 𝒞2) if, and only if, the following holds:

WRS{𝒞1} રWRS{𝒞2}

Then ર relation among all sets of roles that enforce the same basic principle of least privilege
is a partial order. When 𝒞1 ર 𝒞2, but not 𝒞2 ર 𝒞1, we say that the weight of 𝒞1 is more than
𝒞2(denoted by 𝒞1 ≻ 𝒞2). By definition, 𝒞1 and 𝒞2 are equivalent if, and only if, 𝒞1 ર 𝒞2 and
𝒞2 ર 𝒞1.

When both 𝒞 and 𝒞′ enforce the basic principle of least privilege for the same requested
permissions set requirements, there are three cases:

1. 𝒞 ≻ 𝒞′, in which case, 𝒞′ is preferable to 𝒞 for enforcing the basic principle of least
privilege for the same requested permissions set as it has lesser weight or lesser harmful;

2. 𝒞′ ≻ 𝒞 , in which case, 𝒞 is preferable to 𝒞′;
3. 𝒞 and 𝒞′ are equivalent, in which case, either 𝒞 or 𝒞′ can be used.

Then we can define the optimal basic principle of least privilege based on the weight of role
set as follows.

Definition 13. (The Optimal Basic Principle of Least Privilege(OBLP))Given a
set of requested permissions RQ, we say that a set 𝒞 of roles is optimization for enforcing the
basic principle of least privilege for the requested permissions set RQ if, and only if, 𝒞 enforces
the basic principle of least privilege for the requested permissions set RQ and there does not
exist a different set 𝒞′ of roles such that 𝒞′ also enforces the basic principle of least privilege
for the same requested permissions set RQ and 𝒞 ≻ 𝒞′ (the weight of 𝒞′ is less than the weight
of 𝒞).
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SPECIFYING AND ENFORCING THE PRINCIPLE OF LEAST PRIVILEGE IN RBAC 7

3.2. Variants of the Basic Principle of Least Privilege

While exact match is a good thing to have, approximate match might be a prudent choice
for the real systems. For example, if there are many casual users from the outside want to
complete tasks. We exactly know each user’s permissions in this situation, but the minimal
number set of roles may not exist, that is, there may not be a set of roles r1

∪
r2

∪
...
∪
rk

such that r1
∪
r2

∪
...
∪
rk 0-consistency with the casual user’s requested permissions set. Then

there may be three approaches to solve this problem:

1. The administrator can not give any role to the casual user because there is no roles
set which exactly matches the casual user’s requested permissions set, hence there is
no operability for the casual user in this way. In other words, the casual user can not
complete the task at hand;

2. The administrator can give a set of roles to the casual user through altering role
hierarchies to satisfy the casual user’s requested permissions set. In this case, there
are three disadvantages. Firstly, role hierarchies reflect, to some extent, the applications’
organizational structures, which is the important characteristic of RBAC. With role
hierarchies not conforming to the organizational structures, RBAC would be less
attractive; Secondly, the roles may be split many times and many new roles would appear.
If there are a large number of casual users, the role hierarchies will be too complicated
to be understood; Last but not least, it would incur large administration overhead [8]
and

3. The administrator directly assigns each requested permission to the casual users.
However, this approach is cumbersome and makes it difficult for security administrator
to manage. On the other hand, this approach can not utilize the benefits of RBAC.

In this situation, if we want to conveniently provide a role set for the user to complete the
work, the notion of 𝛿-consistency is useful, since it helps to bound the degree of approximation.
Therefore, we define the approximate principle of least privilege using 𝛿-consistency as follows.

Definition 14. (The 𝛿-approx Principle of Least Privilege (𝛿LP)) Given a set of
requested permissions RQ, and a threshold 𝛿 ≥ 0, find a set of roles r1, r2...rk that 𝛿-consistency
with RQ and minimizing the number of roles, k.

It should be made clear that the basic principle of least privilege defined earlier is simply a
special case of the 𝛿-approx principle of least privilege (with 𝛿 set to 0). In this principle of least
privilege, given the same threshold 𝛿, there may be many sets of roles which are 𝛿-consistency
with the requested permissions RQ and all k is minimal. Then a measurement is needed to
make sure how good a set of roles are, so that they can be selected among.

Definition 15. Let 𝒞1 and 𝒞2 be two sets of roles that both enforce the same 𝛿-approx
principle of least privilege with the requested permissions set RQ. We say that the weight
of redundancy permissions of 𝒞1 to the requested permissions set RQ is at least as big as
the weight of redundancy permissions of 𝒞2 to the requested permissions set RQ (denoted by
𝒞1 ર 𝒞2) if, and only if, the following holds:

WRP(𝒞1;RQ) રWRP(𝒞2;RQ)
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Then ર relation among all sets of roles that enforce the same 𝛿-approx principle of least
privilege with the requested permissions set RQ is a partial order. When 𝒞1 ર 𝒞2, but not
𝒞2 ર 𝒞1, we say that the weight of redundancy permissions of 𝒞1 to the requested permissions
set RQ is more than the weight of redundancy permissions of 𝒞2 to the requested permissions
set RQ (denoted by 𝒞1 ≻ 𝒞2). By definition, 𝒞1 and 𝒞2 are equivalent if, and only if, 𝒞1 ર 𝒞2
and 𝒞2 ર 𝒞1.

When both 𝒞 and 𝒞′ enforce the same 𝛿-approx principle of least privilege with the requested
permissions set RQ, there are three cases:

1. 𝒞 ≻ 𝒞′, in which case, 𝒞′ is preferable to 𝒞 for enforcing the same 𝛿-approx principle of
least privilege with the requested permissions set RQ as it has lesser weight of redundancy
permissions or lesser harmful to the system when the casual user gets more permissions
than required;

2. 𝒞′ ≻ 𝒞 , in which case, 𝒞 is preferable to 𝒞′;
3. 𝒞 and 𝒞′ are equivalent, in which case, either 𝒞 or 𝒞′ can be used.

Then we can define the optimal 𝛿-approx principle of least privilege based on the weight of
redundancy permissions to the requested permissions set RQ as follows.

Definition 16. (The Optimal 𝛿-approx Principle of Least Privilege(O𝛿LP)) Given
a set of requested permissions RQ, we say that a set 𝒞 of roles is optimization for enforcing
the 𝛿-approx principle of least privilege for the requested permissions set RQ if, and only if,
𝒞 enforces the 𝛿-approx principle of least privilege for the requested permissions set RQ and
there does not exist a different set 𝒞′ of roles such that 𝒞′ also enforces the 𝛿-approx principle
of least privilege for the requested permissions set RQ and 𝒞 ≻ 𝒞′. (the weight of redundancy
permissions of 𝒞′ is less than the weight of redundancy permissions of 𝒞).

Instead of bounding the approximation, and minimizing the number of roles, it might be
interesting to do the reverse-bound the number of roles, and minimizing the approximation.
This will occur once that there are cardinality constraints in RBAC systems. For example, each
user can hold not more than three roles. In this situation, there are not more than three roles
0-consistency with a set of requested permissions. Then we need define the minimizing-approx
principle of least privilege as follows.

Definition 17. (The Minimizing-approx Principle of Least Privilege(MLP)) Given
a set of requested permissions RQ, and the number of roles k, find a set of roles not more
than 𝑘 such that r1, r2...rj (𝑗 ≤ 𝑘) 𝛿-consistency with the requested permissions set RQ and
minimizing the 𝛿.

Similarly, the results of minimizing-approx principle of least privilege for the requested
permissions set RQ may be more than one set. We can also use the same measurement described
in the 𝛿-approx principle of least privilege in order to select the optimal set among them. And
the optimal minimizing-approx principle of least privilege is described as follows.

Definition 18. (The Optimal Minimizing-approx Principle of Least Privi-
lege(OMLP)) Given a set of requested permissions RQ, we say that a set 𝒞 of roles is
optimization for enforcing the minimizing-approx principle of least privilege for the requested
permissions set RQ if, and only if, 𝒞 enforces the minimizing-approx principle of least privilege
for the requested permissions set RQ and there does not exist a different set 𝒞′ of roles such that
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Table I. A sample role-permission assignments for describing the basic principle of least privilege

p1 p2 p3 p4 p5 p6
r1 1 1 0 0 0 0
r2 0 0 1 1 0 0
r3 1 0 1 0 0 0
r4 0 1 0 1 0 0
r5 1 1 0 0 1 0
r6 0 0 0 0 1 1

𝒞′ also enforces the minimizing-approx principle of least privilege for the requested permissions
set RQ and 𝒞 ≻ 𝒞′ (the weight of redundancy permissions of 𝒞′ is less than the weight of
redundancy permissions of 𝒞).

We can clarify these problems further by means of three examples. Table I shows a sample
role-permission assignments, for 6 roles and 6 permissions. Let us assume the requested
permissions set RQ = {p1, 𝑝2, 𝑝3, 𝑝4}, then {r1, 𝑟2} and {r3, 𝑟4} are both minimal role sets
that 0-consistency with {p1, 𝑝2, 𝑝3, 𝑝4}.

There are three situations for the administrator to choose in order to satisfy the basic
principle of least privilege for the requested permissions set:

1. WRS{r1,r2} > WRS{r3,r4}: We would like to choose the role set {r3, r4} for enforcing
the basic principle of least privilege for the requested permissions set {𝑝1, 𝑝2, 𝑝3, 𝑝4} in
order to decrease the risk of harming the security systems because the role set {r3, r4}
has lesser weight or being less harmful (Here we can incorporate risk to the weight of
each permission and role in order to reflect the harmfulness to the security systems);

2. WRS{r1, r2} < WRS{r3,r4}: Obviously, we would like to choose the role set {r1, r2}
for enforcing the basic principle of least privilege in order to decrease the risk of harming
the security systems;

3. WRS{r1, r2} = WRS{r3,r4}: In this situation, both the role set {r1, r2} and {r3, r4}
can be chosen for enforcing the basic principle of least privilege.

Table II shows a sample role-permission assignments, for 5 roles and 6 permissions. Let us
assume the requested permissions set RQ = {p1, 𝑝2, 𝑝3, 𝑝4}, the weight of each permission is
𝜔p𝑗
∈ [0, 1] (𝑗 = 1, ...6). Obviously there is no role set which exactly matches the requested

permissions set RQ, hence we choose 𝛿 = 1 and k=2 to describe the 1-approx principle of least
privilege (In the 𝛿-approx principle of least privilege problem, we want to find the minimal
number of roles to satisfy the 1-consistency with the requested permissions set RQ, here the
minimal number of roles is 2 when 𝛿 = 1).

Then there are five cases that satisfy the 1-approx principle of least privilege for the requested
permissions set RQ and the minimum number of k is 2:

1. {r1, r2} is 1-consistency with the requested permissions set RQ and the minimum number
of k is 2, in which case, RP(r1, r2;RQ) = {p5},WRP(r1, r2;RQ) = F′(𝜔p5

);

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



10 NSS2009 SPECIAL ISSUE

Table II. A sample role-permission assignments for describing the 1-approx principle of least privilege

p1 p2 p3 p4 p5 p6
r1 1 1 0 0 0 0
r2 0 0 1 1 1 0
r3 1 1 1 0 0 0
r4 0 1 0 1 1 0
r5 0 0 1 1 0 1

2. {r1, r5} is 1-consistency with the requested permissions set RQ and the minimum number
of k is 2, in which case, RP(r1, r5;RQ) = {p6},WRP(r1, r5;RQ) = F′(𝜔p6

);
3. {r2, r3} is 1-consistency with the requested permissions set RQ and the minimum number

of k is 2, in which case, RP(r2, r3;RQ) = {p5},WRP(r2, r3;RQ) = F′(𝜔p5
);

4. {r3, r4} is 1-consistency with the requested permissions set RQ and the minimum number
of k is 2, in which case, RP(r3, r4;RQ) = {p5},WRP(r3, r4;RQ) = F′(𝜔p5

);
5. {r3, r5} is 1-consistency with the requested permissions set RQ and the minimum number

of k is 2, in which case, RP(r3, r5;RQ) = {p6},WRP(r3, r5;RQ) = F′(𝜔p6
);

Here case 1, case 3 and case 4 are equivalent because the weight of redundancy permission
are all F′(𝜔p5

), case 2 and case 5 are equivalent because the weight of redundancy permission
are both F′(𝜔p6

). There are three situations for the administrator to choose in order to satisfy
the 1-approx principle of least privilege for the requested permissions set:

1. F′(wp5
) >F′(wp6

): In this situation, we believe the redundancy permission p5 is more
important than p6. Hence, case 2 and case 5 are preferable to case 1, case 3 and case 4 for
enforcing the same 1-approx principle of least privilege. In fact, it is also true in the real
RBAC systems if there is no exactly role set which satisfies the requested permissions set,
it may be an advisable method for allocating the unimportant redundant permissions
to the casual user to complete the task without bringing serious harm to the security
systems;

2. F′(wp6
) >F′(wp5

): In this situation, the redundancy permission p6 is more important
than p5. Hence case 1, case 3 and case 4 are preferable to case 2 and case 5 for enforcing
the same 1-approx principle of least privilege for the requested permissions set RQ
because they have the lesser weight of redundancy permissions;

3. F′(wp6
)=F′(wp5

): In this situation, the redundancy permission p6 is as important as p5
. Hence case 1, case 3 and case 4 are equal to case 2 and case 5 for enforcing the same
1-approx principle of least privilege for the requested permissions set.

Table III shows a role-permission assignments for the minimizing-approx principle of least
privilege problem where there are 6 roles and 6 permissions. Let us assume the requested
permissions set RQ = {p1, 𝑝2, 𝑝3, 𝑝4}, the weight of each permission is 𝜔p𝑗

∈ [0, 1] (𝑗 = 1, ...6).
Obviously there is not an exact match for the requested permissions set, so we choose k=2 to
describe the minimizing-approx principle of least privilege (In the minimizing-approx principle
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Table III. A sample role-permission assignments for the minimizing-approx principle of least privilege

p1 p2 p3 p4 p5 p6
r1 1 1 1 0 0 0
r2 0 0 0 1 1 1
r3 1 1 0 0 0 0
r4 0 0 1 1 1 0
r5 0 0 0 1 1 0
r6 0 0 0 0 1 1

of least privilege problem, we want to find no more than k roles to satisfy the 𝛿-consistency
with the requested permissions set RQ and minimizing the 𝛿 at the same time, here we choose
the number of roles is 2).

Then there are four cases that satisfy the minimizing-approx principle of least privilege for
the requested permissions set:

1. {r1, r2} is 2-consistency with the requested permissions set RQ and the number of
roles is no more than 2, in which case, RP(r1, r2;RQ) = {p5, p6},WRP(r1, r2;RQ) =
F′(𝜔p5

, 𝜔p6
);

2. {r1, r4} is 1-consistency with the requested permissions set RQ and the number of roles
is no more than 2, in which case, RP(r1, r4;RQ) = {p5},WRP(r1, r4;RQ) = F′(𝜔p5

);
3. {r1, r5} is 1-consistency with the requested permissions set RQ and the number of roles

is no more than 2, in which case, RP(r1, r5;RQ) = {p5},WRP(r1, r5;RQ) = F′(𝜔p5
);

4. {r3, r4} is 1-consistency with the requested permissions set RQ and the number of roles
is no more than 2, in which case, RP(r3, r4;RQ) = {p5},WRP(r3, r4;RQ) = F′(𝜔p5

);

If we choose the sum as the function to compute the weight of the redundancy permissions,
according to Definition 18, case 2, case 3 and case 4 are all preferable to case 1 because the
redundancy permission’s weight is lesser. Case 2, case 3 and case 4 are equivalent because they
have the same weight of redundancy permission.

4. Computational Complexity

The basic principle of least privilege and its variants are all optimization problems. The theory
of NP-completeness applies to decision problems. Therefore, in order to consider the complexity
of the problems, we now give the decision version of these problems.

Definition 19.(Decision BLP) Given a set of requested permissions RQ, and the number
of roles k, are there a set of roles, ROLES, 0-consistency with the requested permissions set
RQ such that ∣𝑅𝑂𝐿𝐸𝑆∣ ≤ 𝑘 is called the basic principle of least privilege decision problem.

Definition 20.(Decision 𝛿LP) Given a set of requested permissions RQ, the number of
roles k, and a threshold 𝛿 ≥ 0, are there a set of roles, ROLES, 𝛿-consistency with the requested
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permissions set RQ such that ∣𝑅𝑂𝐿𝐸𝑆∣ ≤ 𝑘 is called the 𝛿-approx principle of least privilege
decision problem.

Definition 21.(Decision MLP) Given a set of requested permissions RQ, the number of
roles k, and an approximate threshold 𝜃 ≥ 0, are there a set of roles, ROLES, such that

∥ r1
∪

r2
∪

...
∪

r𝑗 −Q ∥1≤ 𝜃 (1 ≤ j ≤ k)

is called the minimizing-approx principle of least privilege decision problem.
We now reduce the known minimum cover problem to these problems to show that the above

decision problems are all NP-complete problems [13].
Definition 22.(Minimum Cover Problem) Given a collection 𝒞 of subsets of a finite set

𝒮, and a positive integer k ≤ ∣𝒞∣, is there a collection B of subsets 𝒮 such that ∣𝐵∣ ≤ 𝑘 whose
union is exactly 𝒮?

Theorem 1. The decision BLP is NP-complete.
Proof. We first show that decision BLP problem is in NP. If one correctly guesses the set

of roles, verifying that the guess is correct that can be done in polynomial time: compute the
union of the roles’ permissions and check whether it is equal to the set of permissions in RQ,
compute the number of roles and check whether it is not more than k. Therefore, the decision
BLP problem is in NP.

The transformation is quite simple. Given an instance of the minimum cover problem, here
is how we transform it to an instance of the decision BLP problem: 𝒮 denotes the requested
permissions set RQ, each c ∈ 𝒞 denotes the role. Now, the answer to the decision BLP problem
directly provides the answer to the minimum cover problem (Obviously, the transformation is
polynomial). @

Theorem 2. The decision 𝛿LP is NP-complete.
Proof. We first show that the 𝛿LP decision problem is in NP. If one correctly guesses the

set of roles 𝑟1, 𝑟2...𝑟𝑗 , it only takes polynomial time to compute

∥ r1
∪

r2
∪

...
∪

r𝑗 −Q ∥1
and ensure that it is less than or equal to 𝛿, and that the number of roles j is not more than
k. Therefore, the 𝛿LP decision problem is in NP.

The transformation from the 𝛿LP decision problem to the minimum cover problem is quite
simple. Given an instance of the minimum cover problem, here is how we transform it to an
instance of the decision 𝛿LP problem: 𝒮 denotes the set of requested permissions RQ, each
c ∈ 𝒞 denotes the role, and set 𝛿 = 0. Now the 𝛿LP decision problem is enforceable if and only
if not more than k sets in 𝒞 cover 𝒮 (Obviously, the transformation is polynomial). @

Theorem 3. The decision MLP is NP-complete.
Proof. We first show that the decision MLP problem is in NP. If one correctly guesses the

set of roles r1, r2...rj, it only takes polynomial time to compute

∥ r1
∪

r2
∪

...
∪

r𝑗 −Q ∥1
and ensure that it is less than or equal to 𝜃, and the number of roles j is not more than k.
Therefore, the decision MLP problem is in NP.
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The transformation from the decision MLP problem to the minimum cover problem is also
quite simple. The transformation is as follows: 𝒮 denotes the set of requested permissions RQ,
each c ∈ 𝒞 denotes the role, and set 𝜃 = 0. Now the answer to the decision MLP problem
directly provides the answer to the minimum cover problem (Obviously, the transformation is
polynomial). @

Now we will define the decision version of the optimal basic principle of least privilege
problem, the optimal 𝛿-approx principle of least privilege problem, and the optimal minimizing-
approx principle of least privilege problem as follows.

Definition 23.(Decision OBLP) Given a set of requested permissions RQ, the number
of roles k, and the value of cost 𝜔, are there a set of roles, ROLES, 0-consistency with the
requested permissions set such that ∣𝑅𝑂𝐿𝐸𝑆∣ ≤ 𝑘 and WRS{ROLES} ≤ 𝜔 is called the
optimal basic principle of least privilege decision problem.

Definition 24.(Decision 𝛿LP) Given a set of requested permissions RQ, the number
of roles k, the threshold 𝛿 ≥ 0, and the value of cost 𝜔, are there a set of roles,
ROLES, 𝛿-consistency with the requested permissions set such that ∣𝑅𝑂𝐿𝐸𝑆∣ ≤ 𝑘 and
WRP{ROLES;RQ} ≤ 𝜔 is called the optimal 𝛿-approx principle of least privilege decision
problem.

Definition 25.(Decision OMLP) Given a set of requested permissions RQ, the number
of roles k, the approximate threshold 𝜃 ≥ 0, and the value of cost 𝜔, are there a set of roles,
ROLES, such that WRP{ROLES;RQ} ≤ 𝜔 and

∥ r1
∪

r2
∪

...
∪

r𝑗 −Q ∥1≤ 𝜃 (1 ≤ j ≤ k)

is called the optimal minimizing-approx principle of least privilege decision problem.

Corollary 1. The decision OBLP is NP-complete.

Proof. We first show that decision OBLP problem is in NP. If one correctly guesses the set
of roles, verifying that the guess is correct that can be done in polynomial time: compute the
union of the roles’ permissions and check whether it is equal to the set of permissions in RQ,
compute the number of roles and check whether it is not more than k and calculate the weight
of these roles and check whether it is not more than 𝜔. Therefore, the decision OBLP problem
is in NP.

To prove the NP-hard, we consider a subclass of the problem-the basic principle of least
privilege problem. According to the Theorem 1, we come to the conclusion that the basic
principle of least privilege decision problem is NP-hard. Hence the decision OBLP is NP-
complete. @

Corollary 2. The decision O𝛿LP is NP-complete.

Proof. We first show that decision O𝛿LP problem is in NP. If one correctly guesses the set
of roles 𝑟1, 𝑟2..𝑟𝑗 , it only takes polynomial time to compute

∥ r1
∪

r2
∪

...
∪

r𝑗 −Q ∥1
and ensure that it is less or equal to 𝛿, and that the number of roles j is not more than k
where the weight of these redundancy permissions is not more than 𝜔. Therefore, the decision
O𝛿LP problem is in NP.
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To prove the NP-hard, we consider a subclass of the problem-the basic 𝛿-approx principle of
least privilege problem. According to the Theorem 2, we come to the conclusion that the basic
𝛿-approx principle of least privilege decision problem is NP-hard. Hence the decision O𝛿LP is
NP-complete. @

Corollary 3. The decision OMLP is NP-complete.
Proof. We first show that decision OMLP problem is in NP. If one correctly guesses the set

of roles 𝑟1, 𝑟2..𝑟𝑗 , it only takes polynomial time to compute

∥ r1
∪

r2
∪

...
∪

r𝑗 −Q ∥1
and ensure that it is less or equal to 𝜃, and that the number of roles j is not more than k
where the weight of these redundancy permissions is not more than 𝜔. Therefore, the decision
OMLP problem is in NP.

To prove the NP-hard, we consider a subclass of the problem-the basic minimizing-approx
principle of least privilege problem. According to the Theorem 3, we come to the conclusion
that the basic minimizing-approx principle of least privilege decision problem is NP-hard.
Hence the decision OMLP is NP-complete. @
5. Algorithms

In RBAC systems, the principle of least privilege should be enforced. In other words, if there
is a set of requested permissions, we need select a set of roles to satisfy the basic principle of
least privilege or its variants. The problems are all well known to NP-complete, and hence it
is almost impossible to determine the solutions for any large sized problems in the polynomial
time. Although paper [5] has proposed an algorithm to solve the basic principle of least privilege
problem, however, it did’t consider the weight of each permission and role, and furthermore, the
algorithm cannot solve the 𝛿-approx principle of least privilege problem and the minimizing-
approx principle of least privilege problem. Hence, we express the basic principle of least
privilege problem as an optimization problem: the Minimal Cost Set Covering problem (MCSC)
[11]. We will show that the basic principle of least privilege problem is identical to the MCSC
problem, then all results regarding the approximation of one of these problems carry over
to the other. We can directly use the algorithms for the MCSC problem to solve the basic
principle of least privilege problem. And then we design the alternative algorithms to solve
the 𝛿-approx principle of least privilege problem and the minimizing-approx principle of least
privilege problem.

5.1. Mapping the Basic Principle of Least Privilege problem to the Minimal Cost
Set Covering Problem

We first give a mapping way to solve the basic principle of least privilege problem, which is
based on the idea of Theorem 4.

Definition 26. (MCSC Problem) Given a universe 𝒰 , a collection 𝒞 of subsets of 𝒰
whose union is 𝒰 , and each of the given subset has an associated cost 𝜔 from a weight function
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Table IV. A sample for the minimal cost set covering problem

e1 e2 e3 e4 e5 e6
𝒞1 1 1 0 0 1 1 𝜔1

𝒞2 0 1 1 0 1 1 𝜔2

𝒞3 1 1 0 1 1 0 𝜔3

𝒞4 0 0 0 1 1 0 𝜔4

𝜔 : 𝒞 −→ ℝ+, find a subset 𝒟 ⊆ 𝒞 such that

𝒰 =
∪
D∈𝒟

D and
∑
D∈𝒟

𝜔(D) isminimized

We consider the MCSC problem is a binary matrix of size m×n where the number of rows,
m, can be viewed as the number of collection 𝒞 of subsets of 𝒰 and the number of columns, n,
can be viewed as the number of elements in 𝒰 . A 1 in cell {i, j} (𝑖 = 1, ...𝑚; 𝑗 = 1, ...𝑛) denotes
that subset i has the element j. Each row of the binary matrix will be assigned a positive
weight 𝜔i (𝑖 = 1, ...𝑚). The goal is to choose a set of rows of minimal weight such that for
all columns in the matrix, there is a 1 in at least one of the rows corresponding to the rows
chosen. We present a sample in Table IV where ei (i = 1, 2, 3, 4, 5, 6) describes the elements
in 𝒰 , 𝒞i (i = 1, 2, 3, 4) describes the subsets of 𝒰 and 𝜔i (i = 1, 2, 3, 4) describes the weight
of each subset respectively. In this example, the goal is to choose a set of 𝒞i (i = 1, 2, 3, 4) of
minimal cost such that all the elements ei (i = 1, 2, 3, 4, 5, 6) can be included into the selected
subsets of 𝒰 .

Formally, we can reduce the basic principle of least privilege problem to the MCSC problem
as follows.

Theorem 4. The basic principle of least privilege problem is identical to the MCSC problem
when each subset has the same cost.

Proof. To show that the two problems are identical we show that their inputs and outputs
exactly match. Thus, for every input instance, the output of both problems has a direct one-
to-one mapping [14, 15].

∙ The input to both problem is a m× n boolean matrix;
∙ For any problem instance, the MCSC problem returns a set of rows that completely covers
all the columns while minimizing the number of rows (Here, each row has the same cost).
Each row corresponds to a role, R. For each row, we extract the set of columns C, in the
row. For each column 𝑐 ∈ 𝐶, add the assignment {𝑐,𝑅} to PA. Similarly, for each row,
assign the cost 𝜔 as the weight of each role, and set all the columns as the requested
permissions set RQ ;
∙ The resulting set of roles when each role has the same weight is guaranteed to be a
solution to the basic principle of least privilege for the requested permissions set RQ.
(i.e., the resulting set of roles are 0-consistent with the requested permissions set RQ,
and the number of resulting roles is minimal). To prove the 0-consistency, it is sufficient
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to note that all the resulting roles and the requested permissions set RQ gives us the
original input matrix where the union of the resulting roles is equivalent to the original
requested permissions set RQ. We can prove the minimality by contradiction. Assume
that a different solution to the basic principle of least privilege problem exists-consisting
of R′ where ∣R′∣ < ∣R∣. In this case, we can transform this solution into a corresponding
solution for the MCSC problem. For each role 𝑟′ ∈ R′, create the corresponding subset
𝐶𝑟′ consisting of the permissions given by PA. The union of all subsets

∪
𝑟′∈𝑅′ 𝐶𝑟′ is 0-

consistent with the requested permissions set RQ. However, the number of subsets is the
same as ∣𝑅′∣ which is less than ∣𝑅∣. But that means the earlier solution is not minimal-and
we have a contradiction. Therefore, the solution to the MCSC problem directly maps to
a solution for the basic principle of least privilege problem. @

Thus the MCSC problem exactly corresponds to the basic principle of least privilege problem
when each subset has the same cost. Then we can directly use the algorithms for the MCSC
problem to solve the problem of the basic principle of least privilege. The detailed analysis of
the algorithm can be found in [16, 17]. We now briefly present the genetic algorithm for the
basic principle of least privilege. It consists of six steps as follows.

∙ Representation: Use an n-bit string (one bit per role) to represent a particular choice
of roles. A value of 1 in the x th (where x = 1, ...n) position in string implies that role x
is chosen to be in the cover;
∙ Start: Select a population of m points x1, ...xm to represent the roles set at random and
evaluate the roles set using evaluation function. Set the number of trial t← 0;
∙ Crossover/Mutate: Pick two points xi, xj from the population using a probability
distribution over their values. Select an integer from 0 to m at random with probability
Pcross, and create two offsprings roles xc and xd using crossover; For each bit in xc and
xd, with probability Pmuta, alter its value;
∙ Reproduce: Pick two points xe and xf from the population using a probability
distribution over the inverse of their values. Replace xe and xf in the population with xc
and xd;
∙ New Generation: Repeat the above two steps until n points have been replaced in the
population for the current t ;
∙ Stopping Criteria: Set t ← t + 1. If the number of trial is larger than the maximum
number of trial, or, for some point xi, the value of evaluation is invariant, stop. Otherwise
go to step 3.

The genetic algorithm consists of two phases. In the first phase, we select a population of
roles set at random and evaluate those roles set. Hence we can find the better populations
that have good fitness for the crossover or mutation. In the second phase, we generate the new
generations based on crossover or mutation with a probability distribution. The algorithm will
be stopped until the number of trial is larger than the maximum number of trial, or, the value
of evaluation of the populations is invariant for some results. When the algorithm stopped
we can get the role set that satisfies the basic principle of least privilege for the requested
permissions set.
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5.2. Algorithms for the Principle of Least Privilege Problems

In this section, we design the description methods and evaluation functions to deal with all
the principles of least privilege problems using genetic algorithm.

∙ The algorithm for the basic principle of least privilege problem: We use n-bit
string (one bit per role) to represent a particular choice of roles. The evaluation function
is defined as sr+ sp (where sr is the number of roles chosen in the cover, and sp is the
penalty for cases where the chosen roles do not cover all the requested permissions set);
∙ The algorithm for the optimal basic principle of least privilege problem: We
use n-bit string (one bit per role) to represent a particular choice of roles. The evaluation
function is defined as m × sr + wsr + sp (where m is the number of all roles, sr is the
number of roles chosen in the cover, wsr is the weight of roles chosen in the cover, and sp
is the penalty for cases where the chosen roles do not cover all the requested permissions
set);
∙ The algorithm for the 𝛿-approx principle of least privilege problem: We use
n-bit string (one bit per role) to represent a particular choice of roles. The evaluation
function is defined as sr + sp (where sr is the number of roles chosen in the cover, and
sp is the penalty for cases where the chosen roles do not satisfy the 𝛿-consistency with
the requested permissions set);
∙ The algorithm for the optimal 𝛿-approx principle of least privilege problem:
We use n-bit string (one bit per role) to represent a particular choice of roles. The
evaluation function is defined as m× sr+wrp+ sp (where m is the number of all roles, sr
is the number of roles chosen in the cover, wrp is the weight of redundancy permissions,
and sp is the penalty for cases where the chosen roles do not satisfy the 𝛿-consistency
with the requested permissions set);
∙ The algorithm for the minimizing-approx principle of least privilege problem:
We use n-bit string (one bit per role) to represent a particular choice of roles. The
evaluation function is defined as rp + sp (where rp is the number of redundancy
permissions, and sp is the penalty for cases where the chosen roles do not satisfy the
minimizing-approx principle of least privilege with the requested permissions set);
∙ The algorithm for the optimal minimizing-approx principle of least privilege
problem: We use n-bit string (one bit per role) to represent a particular choice of
roles. The evaluation function is defined as n× rp+ wrp+ sp (where n is the number of
permissions, rp is the number of redundancy permissions, wrp is the weight of redundancy
permissions, and sp is the penalty for cases where the chosen roles do not satisfy the
minimizing-approx principle of least privilege with the requested permissions set).

6. Experimental Results

To show the advantage of our algorithms, we will present the most relevant results by
implementing them on an Intel (R) Core (TM)D 2.2G machine with 2GB memory to evaluate
how well our algorithms perform using different metrics. The running platform is Windows
XP. We choose the parameters 𝑝𝑐𝑟𝑜𝑠𝑠 = 0.75, 𝑝𝑚𝑢𝑡𝑎 = 0.25.
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To study the performance of our algorithms, we generate the synthetic test data as follows.
First, the maximum number of roles, permissions, and each permission’s weight are created
respectively. Then we use for loop to create the relationships between roles and permissions. For
each role, a random number of permissions are chosen. The value of each element in the matrix
is randomly chosen as 0, indicating that the role has no such permission, or 1, indicating that
the role has such permission. Finally, we preprocess the generated data, compute each role’s
weight, and select the union of all roles’ permissions to construct the requested permissions
set RQ.

We present the evaluation of our algorithms on two different role-permission assignments.
For the first set of assignments, we fix the number of roles, while changing the number of
permissions. Table V shows the test parameters. Each test is repeated one hundred times
to evaluate the performance of the algorithms. We are interested in two things: the average
number of evaluations taken by each algorithm to find the best solution in different situations
and how well to find them. The average number of evaluations found by the OBLP algorithm
for various length of requested permissions set is shown in Figure 1(a) (Here we only consider
the OBLP algorithm because the BLP algorithm is simply a special case of the OBLP algorithm
when each role has the same weight). The figure shows that when the length of the requested
permission set is low, there is a low number of evaluations to find the best solution. As the
length of the requested permissions set increases, the number of evaluations will increase
accordingly. We can also see that our algorithm exhibits a polynomial increase in the number
of solution evaluations to get to the best solution. This is contrast to the exponential increase
in complexity of the only known algorithm guaranteed to find the optimal solution, namely
exhaustive search. Thus, the algorithm is able to generate quality solutions in a very reasonable
time frame.

In order to verify the accuracy of the solutions obtained, we implemented an exhaustive
search algorithm to give us the solution for reasonable size problems. We denote all the
results found by the exhaustive search algorithm as 𝑆 = {𝑟𝑠1, 𝑟𝑠2...𝑟𝑠𝑛}. When each test,
the algorithm can get one role set rs. We let 𝑘 ← 𝑘 + 1 if rs exactly matchs to one of the role
set 𝑟𝑠𝑗 (1 ≤ j ≤ n) in S. Hence, the accuracy of the algorithm can be defined as follows.

Definition 27.(The accuracy of the Algorithm) The accuracy of the algorithm is
measured as the ratio of the number of k to the algorithm running times.

The exactly matching can be defined as follows.
Definition 28. Given one roles set ors, the generated roles set drs is said to exactly match

the original roles set ors if and only if each role in ors is also in drs and vice verse.
Figure 1(b) shows the average accuracy of the solutions that it finds in different length of

requested permissions set. From the figure, we can see that, when the length of the requested
permissions set is low, there is a high accuracy. As the length of the requested permissions set
increases, the accuracy of the solution will decrease. This is because the algorithm is always able
to generate optimal solutions to small size problems. For medium size problems the algorithm
may or may not be able to produce optimal solutions. However, all of the accuracy is more
than 90%, which means that our algorithm can generate quality solutions.

In the second experiment, we fix the number of permissions, while changing the number of
roles. Table VI shows the test parameters. Figure 2(a) shows the average number of evaluations
under different data set. Figure 2(b) shows the average accuracy under different data set. It
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Table V. Parameter settings for testing performance (Fixed roles, varying permissions)

Name No. of roles No. of permissions
data1 100 200
data2 100 400
data3 100 800
data4 100 1600

Table VI. Parameter settings for testing performance (Fixed permissions, varying roles)

Name No. of roles No. of permissions
data1 40 800
data2 80 800
data3 160 800
data4 200 800
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Figure 1. Performance comparison under the fixed number of roles for the OBLP algorithm
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Figure 2. Performance comparison under the fixed number of permissions for the OBLP algorithm
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can be clearly seen that the average number of evaluations is close to 120 when we look at the
largest size data, and close to 140 when we look at the smallest size data. This is reasonable
because the algorithm depends on the generated data but not on the size of the data when
the length of the requested permissions set is the same. We can also see that our algorithm is
much more preciser.

Figure 3(a) shows the average number of evaluations found by the O𝛿LP algorithm for
various length of the maximum number of 𝛿 under the first set of experiments, while Figure 3(b)
shows the accuracy of the algorithm (Here we only consider the O𝛿LP algorithm because the
𝛿LP algorithm is simply a special case of the O𝛿LP algorithm when each permission has the
same weight). Here, we can see that the average number of evaluations actually increases with
the maximum number of 𝛿 in the same data on one hand, on the other hand the average
number of evaluations increases with the size of the data. It can also be clearly seen that the
accuracy is close to 100% in the smallest data (100 roles and 200 permissions), and close to
95% in the largest data (of 1600 permissions). This is quite good.

Figure 4(a) shows the average number of evaluations found by the O𝛿LP algorithm for
various length of the maximum number of 𝛿 under the second set of experiments, while
Figure 4(b) shows the accuracy of the algorithm. Here, we can see that the average number
of evaluations actually increases with the maximum number of 𝛿. Again, the accuracy of the
algorithm is quite good, with the largest data and largest number of 𝛿 getting approximately
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Figure 3. Performance comparison under the fixed number of roles for the O𝛿LP algorithm
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Figure 4. Performance comparison under the fixed number of permissions for the O𝛿LP algorithm
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Figure 5. Performance comparison under the fixed number of roles for the OMLP algorithm
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Figure 6. Performance comparison under the fixed number of permissions for the OMLP algorithm

to 97%. Figure 5(a) shows the average number of evaluations found by the OMLP algorithm
for various length of the maximum number of roles under the first set of experiments, while
Figure 5(b) shows the accuracy of the algorithm (Here we only consider the OMLP algorithm
because the MLP algorithm is simply a special case of the OMLP algorithm when each
permission has the same weight). Figure 6(a) shows the average number of evaluations found
by the OMLP algorithm for various length of the maximum number of roles under the second
set of experiments, while Figure 6(b) shows the accuracy of the algorithm. From these figures,
we can see that, our algorithm can also find the best solution taking lesser evaluations.

7. Conclusions

While exact match is a good thing to have, approximate match might be a prudent choice
for the real systems. To solve this problem, this paper addresses the problem of the 𝛿-approx
principle of least privilege, the minimizing-approx principle of least privilege. However, how
to choose from the different sets which can enforce the same principle of least privilege for
the same requested permission set? To solve this problem, this paper introduces the weight of
permission and role set. It has been proved that the basic principle of least privilege and all
its variants are NP-Complete. Therefore, we first reduce the basic principle of least privilege
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to the MCSC problem. As a result, we could borrow the implementation solutions proposed
for the MCSC problem and directly apply them to solve the problem of the basic principle of
least privilege. We also use alternative algorithms to solve its variants. Finally, we carry out
the experiments to illustrate the effectiveness of the proposed techniques. As has been proved,
the proposed approach has superior performance in finding the optimal solution to improve
both speed and accuracy. In our future work, we will try to find more significant attributes to
make the weight of permission and role more accurate and meaningful. So that they could be
used to further optimize the results.
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