
An Efficient SSD-based Hybrid Storage Architecture for Large-scale
Search Engines

Ruixuan Li, Chengzhou Li
School of Computer Science and Technology

Huazhong University of Science and Technology
Wuhan, P.R.China

Email: rxli@hust.edu.cn, chengzhouli@smail.hust.edu.cn

Weijun Xiao
Department of Electrical and Computer Engineering

University of Minnesota
Twin Cities, USA

Email: wxiao@umn.edu

Hai Jin, Heng He, Xiwu Gu, Kunmei Wen
School of Computer Science and Technology

Huazhong University of Science and Technology
Wuhan, P.R.China

Email: hjin@hust.edu.cn, henghe@smail.hust.edu.cn,
guxiwu@hust.edu.cn, kmwen@hust.edu.cn

Zhiyong Xu
Department of Mathematics and Computer Science

Suffolk University
Boston, USA

Email: zxu@mcs.suffolk.edu

Abstract—Large-scale search engines use hard disk drives
(HDD) to store the mass index data for their capacity, whose
performances are limited by the relatively low I/O performance
of HDD. Caching is an effective optimization, and many caching
algorithms have been proposed to improve retrieval performance.
Considering the high cost of memory and huge amounts of data,
the limited capacity of cache in memory cannot resolve the above
problem thoroughly. In this paper, we adopt a solid state disk
(SSD) based storage architecture, which uses SSD as a secondary
cache for memory. We analyze the I/O patterns of search engines
and propose SSD-based data management policies based on
the hybrid storage architecture, including data selection, data
placement and data replacement. Our main goal is to improve
the performance of search engines while reducing operation cost
inside SSD. The experimental results demonstrate the proposed
architecture improves the hit ratio by 13.31%, the performance
by 41.05%, the average access time inside SSD by 43.83%, and
reduces block erasure operations by 71.52%.

Index Terms—search engine; solid state disk; hybrid storage
architecture; caching

I. INTRODUCTION

A web search engine is designed to search information
on World Wide Web servers. Large search engines need to
process hundreds of queries per second on collections of
millions of documents. As a result, query processing is a
major performance bottleneck and cost factor in the current
search engines. A number of techniques have been employed
to increase query throughput, including massively parallel
processing, index compression, early termination, and caching.

With the development of computer technology in hard-
ware, especially the rapid development of CPU technology, the
low I/O performance of hard disk drive (HDD) becomes the
major bottleneck in modern large-scale search engines. For the
last two decades, researchers have made continuous efforts to
address several open issues of HDD, such as long latencies of
handling random accesses, excessively high power consump-
tion, audible noise and uncertain reliability, etc. Considering
that these issues are essentially rooted in the mechanical nature

of HDD, they are inherently difficult to be solved by localized
improvements of disks.

Fortunately, the emerging solid state disk (SSD) technology
brings new and promising opportunities to those I/O-intensive
applications. Unlike traditional rotating media, SSD is based
on semiconductor chips, which provides many desired tech-
nical merits, such as low power consumption, compact size,
shock resistance, and most importantly, ultra-high performance
for random data access. Consequently SSD has been called
as a “pivotal technology” to revolutionize storage systems.
In fact, two leading on-line search engine service providers,
namely google.com and baidu.com, announced their plans to
migrate part of their data from HDD to SSD [1].

However, two potential issues may complicate the full
adoption of SSD in large-scale search engines. First, current
average cost per GB of SSD is 10 times more than that
of HDD. In addition, the existing data in large-scale search
engines are extraordinarily large, it is not suitable to store all
the data on SSD. For example, Google makes use of a large
number of cheap servers with HDD to provide high quality
services [2]. Second, since SSD has a limit of block erasure
count, the combination of a more stressful workload and fewer
available erasure cycles reduces the useful lifetime of SSD, in
some cases to less than one year [3].

In this paper, we aim to further improve the performance of
large-scale search engines by using SSD without obviously
increasing the cost of servers. Without any major change
to the existing HDD-based storage systems used in search
engines, we propose an SSD-based hybrid storage architecture
with memory as the first-level cache and SSD as the second-
level cache. In search engines, two types of cached data
dominate, namely results and inverted lists. There are some
differences between caching results and inverted lists. First,
the result entries are small and similar in size, the inverted
list entries are usually large and variable in size. In addition,
only part of the inverted lists are required during computing.

Second, the results are prominently relevant to the queries
and time-sensitive, while the inverted lists are relatively stable.
Considering these characteristics, we propose different policies
to manage the two types of cached data respectively, which
are specifically designed for search engines. To the best of our
knowledge, although this hybrid SSD-based two-level cache
architecture has been evaluated in database systems [4], we are
the first to comprehensively analyze this problem and propose
an efficient solution for the application of search engines.

We have made three main contributions in this work. First,
we propose a data selection policy, which carefully places the
data to be cached in memory or SSD. Second, we propose
an improved log-based method to organize the cached data
on SSD so as to ensure the performance of write and read
operations, which is a data placement issue. Third, we propose
different overwriting policies for result cache and inverted list
cache in SSD so as to avoid expensive random writes and
reduce block erasure operations, which is a data replacement
issue.

The rest of the paper is organized as follows. Section
II describes the background and discusses the related work.
Section III analyzes the characteristics of I/O trace in search
engines. Section IV characterizes the problem that we are
discussing in this paper. Section V describes the two-level
cache architecture. Section VI introduces our proposed cache
algorithms. Section VII presents the results of performance
evaluation, and Section VIII concludes this study and discusses
future work.

II. BACKGROUND AND RELATED WORK

In this section, we focus on previous work which is closely
relevant to our work, including related work on SSD, SSD-
based hybrid storage, SSD-based buffer management, and
caching in search engines.

A. Solid State Disk

Over the past decades, the use of flash memory has evolved
from specialized applications in hand held devices to primary
system storage. Flash memory can be written or read a single
page at a time, but it has to be erased in granularity of block,
which is much larger than page [5].

Inside an SSD, there is a kind of special software called
flash translation layer (FTL). Researchers have done a lot of
work on FTLs. In 1998, Intel proposes a page-mapped FTL
for the first time [6], however, the mapping table takes up
large space of SRAM in SSD, which makes it not suitable
for SSD of large capacity. In order to overcome this problem,
a block-mapped FTL is proposed in [7]. As a trade-off, the
block-mapped FTL has generally a lower read and garbage
collection performance. To address the above shortcomings,
researchers have come up with a log-based FTL scheme,
which is a hybrid between page-level and block-level schemes
[8][9]. In 2009, a page-level mapping scheme called DFTL is
proposed to reduce memory requirement and lookup overhead
by loading partial of mapping table into SRAM [10]. All the

FTLs above are designed to resolve the issue of “erase-before-
write” and limited life-span inside SSD. Although the FTLs
are completely transparent to users, different FTLs may suffer
a big difference in the same application. In this paper, we take
the ideal page-based FTL [6] as the base line.

B. SSD-based Hybrid Storage

Considering the special I/O performance of SSD, researches
on SSD-based hybrid storage architecture has attracted much
focus from both academic and industrial fields. Given its
excellent random read performance, SSD can work well as a
read cache in front of a larger HDD [11][12]. G. Soundararajan
et al. propose Griffin, a hybrid storage device that uses HDD
as a write cache for a Solid State Device (SSD) [3]. Although
SSD is also used as a read cache in our proposed hybrid
storage architecture, we focus the special application (large-
scale search engines) and optimize the performance of SSD-
based read cache according to its characteristics.

C. SSD-based Buffer Management

The traditional virtual memory system has been designed for
decades assuming a magnetic disk as the secondary storage.
Park et al. [13] propose a new replacement policy called
CFLRU to reduce writes to SSD by keeping dirty pages
in memory as long as possible. Jung et al. [14] propose
an LRU algorithm called LRU-WSR that enhances LRU by
reordering writes of not-cold dirty pages from the buffer
cache to flash storage. Kim et al. [15] propose a new write
buffer management scheme called BPLRU, which significantly
improves the random write performance of flash storage.
CFLRU and LRU-WSR are oriented to the application layer,
while BPLRU is an internal buffer management algorithm
inside SSD. The above algorithms are designed for general
purpose applications, while we focus on large-scale search
engines.

D. Caching Techniques in Search Engines

In search engine, caching is an effective optimization. The
caching techniques in search engines can be classified as
follows.

Result caching: Result caching filters out repetitions in
the query stream by caching the complete results of previous
queries for a limited time window [16][17].

List caching: At the lower level inside each index server, list
caching is used on a lower level in each participating machine
to keep the inverted lists of frequently used search terms in
main memory [18][19].

Two-level caching: Saraiva et al. [18] evaluate a two-level
caching architecture using result and list caching on the search
engine TodoBR.

Three-level caching: Long et al. [19] propose and evaluate
a three-level caching scheme that adds an intermediate level
of caching.

In [20], Huang et al. point out that it is possible to
substantially improve the performance of web index server by
using flash-aware storage management approaches. Pritchett

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35 40 45 50

Lo
gi

c
S

ec
to

r
N

um
be

r(
10

5)

Read Sequence(102)

(a) I/O Trace of Web Search (UMass)

154

155

156

157

158

159

160

0 5 10 15 20 25 30 35 40 45 50

Lo
gi

c
S

ec
to

r
N

um
be

r(
10

5)

Read Sequence(102)

(b) I/O Trace of Lucene Search (self-built)

Fig. 1. The I/O trace of search engines

et al. [21] propose a new and cost-effective architecture,
namely “SieveStore”. However, “SieveStore” does not take the
characteristics of caching in large-scale search engines into
account.

As far as we know, few studies focus on the optimization in
search engines by using SSD. In [20], Huang et al. consider
the optimal policy that allocates the DRAM portion of inverted
index into flash memory as much as possible. But they do
not discuss how to place the data on SSD for higher I/O
performance and how to replace the data on SSD when the
available free space of SSD is exhausted. In addition, they
do not take the cost effectiveness into consideration under the
circumstances of large-scale search engines. In this paper, we
try to discuss the problem of caching with SSD, design several
policies and give a simple implementation so as to improve
the performance of large-scale search engines.

III. I/O PATTERNS OF SEARCH ENGINES

In this paper, we have collected two kinds of I/O traces
in search engines, one is downloaded from “UMass Trace
Repository” [22], and the other is collected from a simulative
search engine built on Lucene [23] by ourselves. In self-built
search engine, we collect the disk I/O trace on Windows Server
2003 with DiskMon during the process of retrieval. Figure 1
shows the I/O patterns of the search engines, where the x-axis
denotes the read sequence, and the y-axis denotes the logic
sector number.

Four obvious characteristics in the I/O patterns of search
engines can be figured out: read-dominant, locality, random
reads and skipped reads, which are described in detail as
follows.

• Read-dominant. According to the analysis using the web
search trace of UMass, read operations take up more than
99%, which indicates that read performance takes a key
role in search engines.

• Locality. Although the data scale is tremendously large,
only part of the data is frequently accessed. Locality is
quite obvious during the process of retrieval.

• Random reads. As large amount of irregular queries are
processed at the same time, random reads are inevitable.

• Skipped reads. In practice, search engines adopt many
technologies to optimize the I/O performance, such as
skipped reads. Take Lucene as an example, there are
several “skip list” in the index of Lucene. During the
process of retrieval, although the “docId” lists are stored
sequentially in the inverted lists, they are more likely
to be read in skip order rather than in sequential order.

The reasons are as follows: first, different documents
have different term frequency (“tf”), only the documents
that have higher term frequency will be accessed during
computing; second, considering early termination during
the process of retrieval, only part of the inverted list
are required, therefore skipped reads may take place
frequently

Unlike the other read-dominant data centers, the search
engine applications have their own particular characteristics
in terms of data structures and access patterns. Furthermore,
during the process of retrieval, the access frequency of terms
follows Zipf-like distribution [18]. In addition, although some-
times the inverted list of a term is fairly large, only small part
of the inverted list is required during computing.

IV. PROBLEM DEFINITION

A. Caching Scheme

Considering the shared data by memory and SSD, we
divide the two-level cache scheme into three caching schemes:
inclusive scheme, exclusive scheme and hybrid scheme. With
a page as the smallest cache unit, the three schemes can be
described as follows.

• Inclusive Scheme. Whenever a page is in memory, it is
also cached on SSD. That is to say, if the system caches
a page in memory, it should also write the page to SSD.

• Exclusive Scheme. No page is stored on both memory
and SSD at the same time. A page brought from SSD to
memory is removed from SSD, and vice versa.

• Hybrid Scheme. A page in memory may or may not be
cached on SSD, depending on criteria either set by the
user or decided based on the current workload.

In this paper, we adopt the hybrid scheme. The main reasons
are as follows. If we use the inclusive cache scheme, SSD and
memory share most of the cached data, which can not bring
the expected advantages of SSD into full play. If we take the
exclusive scheme, the data should be removed when they are
read from SSD, which will result in a number of block erasure
operations inside SSD and shorten the life-span of SSD. In the
hybrid scheme, all the hot data will be cached in memory first.
Once the cache in memory is full, some least recently used
data will be evicted and then written into SSD according to
our proposed eviction policies. When the available capacity
of SSD is exhausted, the fresh data evicted from memory will
overwrite the cold data in SSD. Note that if the data cached in
SSD are hit, they will be read from SSD to memory without
deleting.

B. Problem Consideration

Table I presents 9 different kinds of situations during the
process of retrieval. As shown in Table I, note that “R” denotes
the results, “I” denotes the inverted lists. “memory”, “SSD”
and “HDD” denotes where the data are read from respectively.
“Probability” denotes the probability that the corresponding
situation takes place. “Time Cost” denotes the average time
cost of reading data from corresponding storage device.

TABLE I
RETRIEVAL UNDER DIFFERENT SITUATIONS

Situation memory SSD HDD Probability Time Cost

S1 R P1 T1

S2 I P2 T2

S3 R P3 T3

S4 I I P4 T4

S5 I P5 T5

S6 I I I P6 T6

S7 I I P7 T7

S8 I I P8 T8

S9 I P9 T9

In order to minimize the average response time, the fol-
lowing conclusions are reached by analyzing the different
situations in Table I.

(1) As our goal is to reduce read operations on HDD and
write operations to SSD, it is reasonable to place read-
intensive data in memory or SSD and write-intensive
data on HDD. That is, the probability of “S1”, “S2”,
“S3”, “S4”, and “S5” should be increased.

(2) Considering that the inverted lists are variable in size
while the capacity of cache is limited, it is important to
balance the access frequency and the size of inverted list.
Therefore, an advanced algorithm is needed to identify
which part of the inverted list is worth caching.

(3) Considering the special characteristics of SSD (e.g.
asymmetrical write and read performance, limited block
erasure count) and limited capacity, it is a challenge to
determine whether the data evicted from memory should
be flushed to SSD.

Considering that the typical large-scale search engines are
usually read-dominant applications, for simplicity, we limit our
discussion in the static scenario in this paper. If the dynamic
situation is considered, we can also have a similar solution.
Suppose that each cached data has a “TTL” (Time-to-Live),
when the cached data expire, the search engines will read the
latest data from HDD for computing. The dynamic situation
is one of the research contents in our future work.

V. ARCHITECTURE

Our proposed hybrid SSD-based storage architecture for
large-scale search engines can be illustrated as Figure 2, which
is similar to the multi-level cache (L1, L2, L3 etc.) in CPU.
In this architecture, the first-level cache is memory, which is
adopted to store the most frequently used data, and the second-
level cache is SSD, which is used as a complement for memory
and mainly stores the data evicted from memory to SSD when
the cache in memory is full.

In Figure 2, all the queries from users will be pretreated by
query processor first, and then they will be forwarded to cache
manager. The cache manager is the most important part in this
architecture, whose functions include selection management
(SM), query management (QM), and replacement management
(RM). All the data evicted from memory should be transferred
to write buffer for assembling before they are flushed to SSD.

Write

Buffer SSD

L1 Cache L2 Cache

HDD

Index Storage

Main Memory

Query

Preprocessor

Query

SM

Cache
Manager

RM

QM

Fig. 2. The SSD-based cache architecture for search engines

The functions of “SM”, “QM”, and “RM” can be described
in detail as follows.

Selection Management (SM). Considering the limited ca-
pacity and special I/O characteristics of SSD, not all the data
evicted from memory will be flushed to SSD. It is important
to select the data to be cached in memory or SSD.

Query Management (QM). When a query arrives, the
cache manager first checks whether the required data have
been cached in memory or SSD. If neither, the cache manager
has to read data from HDD for retrieval computing and then
cache the used data in memory if necessary.

Replacement Management (RM). When the available
cache space in memory or SSD is exhausted, data replace-
ment is inevitable. The functions of replacement management
comprise two aspects: first, when the cache in memory is full,
some data should be evicted from memory to SSD and the
fresh data will replace the victim data in memory; second,
when the available free space in SSD is exhausted, the cache
manager has to select the victim data on SSD for replacement.

We will present the data selection, data placement and data
replacement policies in Section VI.

VI. DATA MANAGEMENT POLICIES

In this paper, we take a two-level cache scheme in search en-
gines, which combines result and inverted list caches together.
In realistic search engines, the size of each cached result may
be approximate or identical, and we take it as fixed-length
cache entry. However, the cached inverted lists are usually
variable in size, thus we call it as variable-length cache entry.

In our research, we assume the parameters of SSD as
follows: the size of a page is 2KB, and one block contains
64 pages, namely the size of a block is 128KB. Each read,
write and erasure operation may take 20µs, 250µs and 1.5ms
respectively.

In cached query results, each result entry only caches the
Top-K documents, and in this paper we assume K equals 50.
Suppose that the size of each document (i.e. URL, snippet,
date, etc.) in a result entry approaches 400B, the size of each
result entry (50 documents) is nearly 20KB. When the result
cache buffer in memory is full, the evicted result entries will
be transferred to write buffer, waiting to be flushed to SSD.

The size of an inverted list is a function of both the term
popularity in the collection and the number of documents
being indexed. For large collections, these inverted lists may
be very large, which makes it impossible to cache most of the
valuable inverted lists in memory. To address this problem,

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

0 1 2 3 4 5 6 7 8 9 10In
ve

rt
ed

 L
is

t U
til

iz
at

io
n

R
at

e(
%

)

Ranked Terms NO(3*102)

(a) Inverted List Utilization Rate Distribution

0
15
30
45
60
75
90

105
120
135
150

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8

T
er

m
 A

cc
es

s
F

re
qu

en
cy

 (
10

2)

In
ve

rt
ed

 L
is

t S
iz

e
(1

05)

Ranked Terms NO(102)

(b) Term Access Frequency Distribution

Fig. 3. The inverted list utilization rate distribution and the term access
frequency distribution (5 million documents indexed from enwiki data set,
and the query log is from AOL)

we turn to an important characteristic of the filtered vector
model processing technique, which has been discussed in
[18]. In this technique, the inverted lists are sorted according
to the frequency of the term occurrence in each document,
and the query processing exploits the frequency variance by
using the documents in which the term is most frequent.
As a consequence, the lists are not fully traversed or are
not traversed at all, depending on the relevance of the term
in the query and the document collection. Since lists are
almost always partially processed, we set out to cache part
of the inverted lists. The frequency-sorted inverted lists can
be partitioned in different ways with different tradeoffs. In
our research, we divide the inverted lists based on block size
(i.e. 128KB, 512KB, or 1024KB).

A. Data Selection

Compared with inverted list entries, result entries are quite
small and similar in size, so we can take the common policy
to deal with result selection. In this part, we mainly focus on
the inverted list selection policy.

Figure 3 represents the inverted list utilization rate distribu-
tion and the term access frequency distribution. It is obvious
that only part of the inverted lists are used during query
processing (Figure 3(a)) and only a small part of inverted
lists are frequently accessed (Figure 3(b)). Considering these
characteristics, it is worthy studying the data selection policy
for the inverted list cache carefully.

When the inverted list cache in memory is full, the evicted
inverted lists will also be transferred to a write buffer, waiting
to be flushed into SSD. Formula 1 presents how to determine
the size of an inverted list which will be flushed to SSD. In
Formula 1, SC denotes the size of the inverted list to bes
cached in SSD, SI denotes the size of the total used inverted
list in memory, PU denotes the utilization rate of the inverted
list and SB denotes the block size in SSD (in this paper, SB

equals 128KB). For example, if SI is 1000KB, PU is 50%,
the SC is 4 (512KB, namely 4 blocks). In this way, all the
cached data are of integral blocks (128 ∗ N KB). Note that
the value of PU can be obtained by analyzing the query log
or computing during the process of retrieval. In this paper, we
assume that PU is already known by analyzing the query log.

Sc = ⌈SI ∗ PU

SB
⌉ (1)

Considering the inverted lists are variable in size, and the
access frequency of terms obeys Zipf-like distribution, we

Memory

SSD

HDD
Term

Value

CS

Freq
EV

TEV: Threshold of EV

Fig. 4. The relationship between efficiency values and terms

take “size” and “frequency” into consideration in inverted
list cache replacement. Formula 2 defines the efficiency value
of the cached inverted list, which is directly proportional to
“Freq” (the access frequency of an inverted list) and inversely
proportional to “SC” (the size of a cached inverted list).

EV =
Freq

SC
(2)

Figure 4 shows the relationship between the efficiency value
of inverted lists and terms. In our research, we assume that the
cache manager will keep the most efficient data in memory,
and second most efficient data in SSD. If the efficiency value
of an inverted list is less than a specified threshold (the
threshold “TEV” can be determined by analyzing the query
log), it will be discarded directly, rather than flushed to SSD.
In inverted list cache replacement policy, we choose the victim
entry by using the efficiency value of inverted list, rather than
the access frequency of inverted list merely.

B. Data Placement

Figure 5 shows how data are flushed to SSD from the write
buffer. We assign each result cache block a logic block number
named RBn. The primary benefit is two-fold: first, the larger
read and write operations can improve the performance of SSD
[5]; second, this kind of data placement policy can avoid data
fragment during the process of data replacement.

The cache manager should maintain two types of mappings,
one is for memory, and the other is for SSD. Figure 6 shows
the memory cache mappings. In Figure 6(a),“key” denotes the
cached query, and “value” comprises the top 50 documents
(one result entry) and access frequency of the corresponding
query. In Figure 6(b), “term” denotes the cached term, “I”
denotes the inverted list, “freq” denotes the access frequency,
“size” denotes the size of the corresponding inverted list,
“PU” denotes the utilization rate of the inverted list. Figure 7
shows the SSD cache mapping. In Figure 7(a), “key” denotes
the cached query, “value” comprises the pointer of an result
entry in the cache file of SSD, access frequency and result
block number. In Figure 7(b), “key” denotes the result block
number, “value” comprises the pointer of an RB in the cache
file of SSD and result flag (a bitmap, one bit for each result
entry in an RB, “1” denotes valid and “0” denotes invalid
“10110000” denotes the first, third and fourth result entries are
valid). In Figure 7(c), “key” denotes the cached term, “value”
comprises the pointer of an inverted list in the cache file of
SSD, access frequency and size. It is obvious that our proposed

Write

Buffer

SSD

Cache

128KB 600KB 128KB 1000KB

128KB 256KB 128KB 512KBmemory

SSD

Result Inverted List Free

PU=50%PU=30%

Fig. 5. The process of how data are flushed to SSD

(b) Inverted List Mapping in Memory

key value

term1

term2 <I2,freq2,size2,PU2>

<I1,freq1,size1,PU1>

(a) Result Mapping in Memory

key value

query1

query2 <R2,freq2>

<R1,freq1>

Fig. 6. The memory cache mappings

(c) Inverted List Mapping in SSD

key value

term1 <ptr1,freq1,size1>

term2 <ptr2,freq2,size2>

(b) Result Block Mapping

key value

RB1 <ptr1,flag1>

RB2 <ptr2,flag2>

(a) Result Mapping in SSD

key value

query1 <ptr1,freq1,RB1>

query2 <ptr2,freq2,RB2>

Fig. 7. The SSD cache mappings

data placement policy can save memory space substantially
(compared with memory merely).

C. Data Replacement

In order to improve the performance of write operations and
reduce block erasure operations in SSD, we adopt an improved
log-based file management policy. In this paper, we divide the
space of SSD into three states logically (Figure 8), respectively
“normal state”, “replaceable state” and “free state”.

The “normal state” denotes that the data block is valid and
read-only. The “replaceable state” denotes that the data block
are replaceable (Figure 8(a)), as they have been read back from
SSD to memory or marked as invalid. If the available space
of SSD is abundant, the replaceable state blocks are just read-
only without overwriting (Figure 8(b)). But if the available
space of SSD is exhausted, the replaceable state data blocks
are more likely to be replaced first (Figure 8(c)). The “free
state” denotes that the data block is free and available for
writing.

Figure 9 shows the state transition among the above three
states. Once a free block is written, it will change from
“free” to “normal”. When a normal block is read from SSD
to memory or marked as invalid, it will change from “nor-
mal” to “replaceable”. However, when a replaceable block is
overwritten by fresh data, it will change from “replaceable”
to “normal” again. In practice, the data cached in SSD may
become cold as time goes on, thus it’s better to delete the cold
data at a proper time for two reasons: one is to make full use of
the limited capacity of SSD, the other is to improve the write
performance of SSD. Note that some types of SSD support
“Trim” [24] operation during deleting, which can improve the
write performance in the large-scale I/O-intensive applications.

Considering the different characteristics between results and
inverted lists, we propose two kinds of replacement policies in

Cache Manager

Write 128KB

(b) Log Write

128 128 1024 256 128 512
SSD

Cache Manager

128 128 1024 256 128 512

Write 128KB

(c) Overwrite

SSD

memory

SSD

Cache Manager

Read 128KB

(a) Read

128 128 1024 256 128 512

noraml state
replaceable state
free state

memory memory

Fig. 8. The log-based cache files management

NormalReplaceable

Free

Overwrite

Read/Evict

De
let
e(T
rim
)

W
rite

Fig. 9. The free, normal and replaceable state change

our research, one is for results, the other is for inverted lists.
Although the two algorithms behave differently, they are both
based on “cost”, which considers the I/O performance and
block erasure inside SSD. We call the proposed algorithms as
CBLRU (Cost-based LRU).

1) Result Cache Replacement Policy: To distinguish the
two-level cache in memory and SSD, we call the result cache
in memory and SSD as “L1 RC” and “L2 RC” respectively.

When “L1 RC” is full, the cache manager will choose
the victim result entries according to the LRU algorithm.
If the available free space of SSD is exhausted, the cache
manager has to choose some result entries in SSD to replace
with the fresh result entries evicted from memory. On the
condition of the traditional LRU algorithm, the small write
operations are random. Small writes are the worst case in SSD,
because it may bring low write performance, large numbers
of block erasure, and it also impacts on the performance of
read operation inside SSD. Therefore, our main idea is to
change small random writes to large sequential writes during
the process of result replacement. In result cache, the smallest
unit of write and overwrite operation is RB (128KB, a block
size), rather than a result entry (about 20KB) merely.

Figure 10 shows the process of result eviction and replace-
ment in memory, which automatically converts the random
writes to sequential writes (similar to [25]). In Figure 10,
there are three types of result entries: “normal result”, “victim
result”, and “fresh result”. “normal result” denotes the normal
result entries stored on SSD, which are read-only, “victim
result” denotes the evicted result entries, which are marked
as invalid during the eviction, and “fresh result” denotes the
result entries evicted from memory and ready to flush to SSD.
In Figure 10(a), a sequence of small random writes may cover
several RBs. However, in Figure 10(b), we collect a sequence
of result entries and assemble them as a logic result block so
that several small random writes can be assembled into a large
sequential write.

Before result entries are flushed to SSD, all the evicted result

RB0 RB1 RBn-1 RBn

(b) Sequential Write

Wirte Buffer

RB0 RB1 RBn-1

(a) Random Write

RBn

victim result fresh resultnormal result

Fig. 10. The result replacement policy in memory

0 1 0 3 2 2 6

C1 C2 C3 C4 C5 C6 C7

10 30

C8 C9

20

C10

Working Region Replace First Region,W=5

MRU LRU

C11
IREN the invalid result entries number in an RB

Fig. 11. The result replacement policy in SSD

entries should be transferred to write buffer first. The cache
manager will check where the result entries in write buffer
are in replaceable state, if so, the cache manager will remove
them directly so as to reduce unnecessary write to SSD; if
not, the cache manager will keep them in write buffer until
they are flushed to SSD. When the number of result entries
in write buffer reaches a specific number, the cache manager
will flush the assembled RB to SSD. Once a RB in SSD is
overwritten by a fresh RB, the cache manager will modify the
“flag” value of the evicted result entry in RB mapping and set
its corresponding bit into invalid.

Figure 11 shows how to choose the victim RB for re-
placement in SSD. In Figure 11, “IREN” denotes the invalid
result entries number in an RB, which includes replaceable
result entries and victim result entries. We divide the LRU
list into two parts: one is “Working Region”, and the other is
“Replace First Region”. “W” denotes the window size of the
replace first region. The “Working Region” mainly maintains
the most recently used data, while the “Replace First Region”
keeps the least recently used data. Our replacement policy
is intentionally designed to replace the RB that contains the
largest “IREN”. In this paper, we only implement a simple
algorithm to choose the victim RB. It is worth being studied
and optimized in the future work.

2) Inverted List Cache Replacement Policy: Figure 12
presents an example of the inverted list cache eviction and
replacement policy in memory. The cache manager maintains
the LRU list according to the value of the inverted list. In
Figure 12, the cached entry “C9” will be evicted first and
replaced by “C11” when the inverted list cache is full in
memory. Note that the size of “C9” should be larger than
“C11”.

Figure 13 presents an example of the inverted list replace-
ment policy in SSD. In Figure 13, we divide the LRU list into
two parts: “Working Region” and “Replace First Region”. Sup-
pose that the oncoming write sequence happens as described in
Figure 13. When the first write (i.e. “1” in Figure 13) arrives,
the cache manager will first check whether there are some
inverted list entries with “replaceable” state in “Replace First
Region”, if any it will replace the “replaceable” inverted list
entries first, thus the first write “1” will overwrite “C6” firstly.

36 87 100 50 68 73 47

C1 C2 C3 C4 C5 C6 C7

35 25

C8 C9

10

C10

MRU LRU

Working Region Replace First Region,W=5

C11
EV the efficiency value of inverted list

Fig. 12. CBLRU for the inverted list cache in memory

128 512 256 2048 640 128 256

C1 C2 C3 C4 C5 C6 C7

128

128 256

C8 C9

256

C10

Working Region Replace First Region,W=5

512 2048

MRU LRU

128

noraml state

1 2 3 4

replaceable state

Fig. 13. CBLRU for the inverted list cache in SSD

The second write “2” will do the same check operation as the
first one, but there are no available “replaceable” inverted list
entries in SSD, so it will choose the inverted list entry which
has the same size (“C8”) as “2” to overwrite in the “Replace
First Region”. When the size of data to be written is larger
than any data blocks in “Replace First Region”, the cache
manager will choose several inverted list entries to assemble a
bigger data block, for example the third write “3” is inclined
to overwrite “C9” and “C10”. However, when the size of data
to be written is too large and there is no suitable choice in
“Replace First Region”, which may be the worst case, the
cache manager will look up in a wider region, namely in all
the LRU list. According to this policy, the fourth write “4”
will finally overwrite “C4” in Figure 13. However, the fourth
situation has little chance of taking place.

In order to reduce write operation to SSD furthermore, we
optimize the proposed cache algorithm CBLRU and propose
another optimized algorithm called Cost-based Static LRU
(CBSLRU). The CBSLRU algorithm divides the cache capac-
ity into two parts: one is static, the other is dynamic. The
dynamic cache is the same as CBLRU. The static cache mainly
stores the most efficient data without any change, namely no
eviction and no replacement. In realistic search engines, we
can get the most efficient result entries and inverted list entries
by analyzing the query log and then store the most valuable
data on SSD first. In the next section, we will compare the
proposed CBLRU with CBSLRU.

VII. PERFORMANCE EVALUATION

Our evaluation has four objectives. First, to verify that our
proposed algorithms can improve the hit ratios. Second, to
verify that our proposed algorithms do improve the retrieval
performance of search engines. Third, to verify that our cache
policy can reduce the cost of search engine servers effectively.
Fourth, to verify that our proposed policies can reduce the
block erasure operations inside SSD and improve the average
access time considerably.

Table II summarizes the hardware and software environment
settings. Our simulative search engine is on the basis of Lucene
3.0.0.

TABLE II
HARDWARE AND SOFTWARE ENVIRONMENT SETTINGS

Test-platform Environment

IR Tool Lucene 3.0.0

Data Set enwiki-20090805-pages-articles.xml

Query Log AOL-user-ct-collection

I/O Trace Analyzer DiskMon 2.0.1

SSD Simulator FlashSim/DiskSim 3.0 (PSU)

SSD Intel SSD 320 Series 40GB

HDD WDCWD3200AAJS 180GB

OS Windows Server 2003/Ubuntu 10.04

CPU/RAM Inter(R) Pentium(R) Dual CPU E2180/2GB

TABLE III
SIMULATION ENVIRONMENT SETTINGS

Simulated SSD

FTL page-mapping

Page Size 2KB

Block Size 128KB

Page Read 32.725 µs

Page Write 101.475 µs

Block Erase 1.5 ms

Table III summarizes the simulation environment setting.
We use DiskMon to collect the hard disk I/O trace during the
process of retrieval test and then we adopt FlashSim (PSU)
[26] to do the SSD simulation. The key parameters of SSD
relevant to our experiments are illustrated in Table III.

A. Hit Ratio Evaluation

The hit ratio is a critical evaluation in cache algorithm. In
Figure 14, the number of total documents is 5,000,000, and
the cache size ranges from about 20MB (106 units) to 200MB
(107 units). Figure 14(a) presents the hit ratio comparison
between result cache, inverted list cache, and the two-level
cache which includes result cache and inverted list cache.
Note that “RC” denotes result cache, “IC” denotes inverted list
cache and “RIC” denotes result and inverted list cache. It can
be seen from Figure 14(a) that the hit ratio will increase with
the increase of cache capacity at a certain range. However, if
we increase the cache capacity continuously, the hit ratio will
have no obvious improvement furthermore.

Under the same condition, since a result entry is much
smaller than an inverted list, the result cache will gain higher
hit ratio than the inverted list cache. When the available
capacity of cache reaches a certain extent in “RC”, the hit ratio
will not increase any more. However, things are quite different
in “IC”, because inverted lists are more significant in locality
than results, the hit ratio improvement will be fairly obvious
with the increase of cache capacity. Therefore, in realistic
search engines, it is important to keep the capacity of “RC”
within bounds. Taking into account the different characteristics
between “RC” and “IC”, we choose to allocate larger cache
capacity for “IC”. In experiments, we simply assume that
“RC” takes up 20% of the cache capacity, while “IC” takes
up 80%. The experimental results in Figure 14(a) further show
that the “RIC” will gain higher hit ratio.

Figure 14(b) illustrates the hit ratio comparison between

 35
 40
 45
 50
 55
 60
 65
 70
 75
 80

1 2 3 4 5 6 7 8 9 10

H
it

R
at

io
(%

)

Cache Size(106)

(a) RC, IC and RIC Comparison

RC
IC
RIC

 30

 40

 50

 60

 70

 80

1 2 3 4 5 6 7 8 9 10

H
it

R
at

io
(%

)

Cache Size(105)

(b) LRU, CBLRU and CBSLRU Comparison

LRU
CBLRU
CBSLRU

Fig. 14. The hit ratio comparison

 50

 100

 150

 200

 250

 300

1 2 3 4 5

R
es

po
ns

e
T

im
e(

m
s)

The Number of Total Documents(106)

(a) Response Time Comparison

HDD
SSD

 2

 4

 6

 8

 10

 12

 14

 16

1 2 3 4 5

T
hr

ou
gh

pu
t(

qu
er

ie
s/

s)

The Number of Total Documents(106)

(b) Throughput Comparison

HDD
SSD

Fig. 15. The search test without cache

LRU, CBLRU and CBSLRU. It can be seen from Figure 14(b)
that our proposed CBLRU and CBSLRU gain higher hit ratios
than the traditional LRU. In this experiment, our proposed
CBLRU and CBSLRU respectively improve the hit ratio by
9.05% and 13.31% averagely compared with LRU. The reason
is that we consider the efficiency value of inverted list rather
than the access frequency merely. In addition, only part of
inverted lists are cached in CBLRU and CBSLRU, the limited
cache can hold much more valid data.

B. Performance Evaluation

Figure 15 shows the results of retrieval test without any
cache. With the increase number of documents, there is a
sharp increase in the average response time and decrease
in throughput. Although the performance of random read in
SSD is much higher than that in HDD, the performance
improvement is not obvious as expected with limited data
in experiments. We believe that if the scale of data becomes
much larger, the difference may be more noticeable, which is
because that more seek time is needed in HDD.

Figure 16 presents the performance comparison with 1L
cache and 2L cache. Note that “1LC” denotes one-level cache
which only includes memory, and “2LC” denotes two-level
cache which includes memory and SSD. “R” denotes result
cache, “RI” denotes the result and inverted list cache. “HDD”
denotes the index files are stored on HDD, while “SSD”
denotes the index files are stored on SSD. In this experiment,
we assume that the size of the result cache in SSD is as 10
times large as the size of the result cache in memory, and the
size of the inverted list cache in SSD is as 100 times large as
the size of inverted list cache in memory. As shown in Figure
16(a), there is a little performance improvement by replacing
HDD with SSD to store the index files, but it is not obvious.
Figure 16(b) proves that our proposed two-level cache design
achieves better performance, especially in caching results and
inverted lists.

 20

 40

 60

 80

 100

 120

 140

 160

1 2 3 4 5

A
ve

ra
ge

 R
es

po
ns

e
T

im
e(

m
s)

The Number of Total Documents(106)

(a) Index Stored on HDD/SSD with 1L Cache

1LC(R)-HDD
1LC(R)-SSD

 20

 40

 60

 80

 100

 120

 140

 160

 180

1 2 3 4 5

A
ve

ra
ge

 R
es

po
ns

e
T

im
e(

m
s)

The Number of Total Documents(106)

(b) 1L Cache and 2L Cache Comparison

1LC(R)-HDD
2LC(R)-HDD
2LC(RI)-HDD

Fig. 16. Performance comparison with 1L cache and 2L cache

 20

 40

 60

 80

 100

 120

 140

1 2 3 4 5

A
ve

ra
ge

 R
es

po
ns

e
T

im
e(

m
s)

The Number of Total Documents(106)

(a) Response Time Comparison

LRU
CBLRU
CBSLRU

 0

 10

 20

 30

 40

 50

1 2 3 4 5

T
hr

ou
gh

pu
t(

qu
er

ie
s/

s)

The Number of Total Documents(106)

(b) Throughput Comparison

LRU
CBLRU
CBSLRU

Fig. 17. Performance comparison between LRU, CBLRU and CBSLRU

Figure 17 shows that the two-level cache architecture with
our proposed CBLRU and CBSLRU approaches can obviously
improve the performance. In comparison with LRU, the aver-
age response time are reduced by 35.27% and 41.05% and the
throughputs are increased by 55.29% and 70.47% in CBLRU
and CBSLRU respectively. However, with the increase of
capacity, the overhead of cache management may increase,
which can affect the retrieval performance. Therefore, we
strongly recommend that it is necessary to optimize the cache
algorithm and choose appropriate capacity size for SSD cache.

C. Cost Performance Evaluation

In this paper, one of our main goals is to reduce the
cost of servers without influencing the retrieval performance.
Figure 18 presents the average response time under different
conditions. In the figure, “1LC” denotes one-level cache,
which uses memory merely, “2LC” denotes two-level cache,
which uses memory and SSD as the cache (we use CBSLRU
algorithm here). “HDD” denotes the index files are stored on
HDD, and “SSD” denotes the index files are stored on SSD.
“MM” denotes memory. In this paper, we assume that the
capacity of “HDD” and “SSD” is large enough to hold all the
index files.

Figure 18(a) indicates that our proposed SSD-based hy-
brid storage architecture demonstrates the best performance
comparing to the one-level cache architecture with index files
stored on HDD or SSD. Figure 18(b) represents the average
response time between different capacities of memory and
SSD. The experimental results show that the two-level cache
architecture is superior to the one-level cache architecture
obviously. In the two-level cache architecture, we can reduce
the capacity of memory and enlarge the capacity of SSD
without performance degradation. As the cost per GB of
memory (14.5$) is much higher than that of SSD (1.9$),
smaller memory means less cost. Compare to the strategies of
increasing the capacity of memory or totally replacing HDD
with SSD, our proposed storage architecture will cut down the

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

1 2 3 4 5

A
ve

ra
ge

 R
es

po
ns

e
T

im
e(

m
s)

The Number of Total Documents(106)

(a) 1L Cache and 2L Cache Comparison

1LC-HDD
1LC-SSD
2LC-HDD

 50

 100

 150

 200

1 2 3 4 5

A
ve

ra
ge

 R
es

po
ns

e
T

im
e(

m
s)

The Number of Total Documents(106)

(b) Comparison in Different Situations

1LC:MM(0.5GB)
1LC:MM(1GB)
2LC:MM(0.1GB)+SSD(2GB)
2LC:MM(0.5GB)+SSD(2GB)

Fig. 18. The cost performance evaluation

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

B
lo

ck
 E

ra
su

re
 C

ou
nt

(1
04)

The Number of Query Times(104)

(a) Block Erasure Count

LRU
CBLRU
CBSLRU

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10F
la

sh
 A

cc
es

s
T

im
e

A
ve

ra
ge

(m
s)

The Number of Query Times(104)

(b) Flash Average Access Time

LRU
CBLRU
CBSLRU

Fig. 19. The simulated performance inside SSD

cost largely under the current hardware condition of large-scale
search engines.

D. Simulation Validation

In this experiment, we set the experimental environment as
follows: the number of total indexed documents is 5 million,
and the query count ranges from 10000 to 100000. We conduct
experiments with three different cache algorithms, namely
LRU, CBLRU and CBSLRU. During the process of retrieval,
we use DiskMon to collect the I/O access pattern in SSD.

Inside SSD, the block erasure is a most expensive operation.
Researchers have proved that the background operations affect
foreground jobs evidently, especially on read [5]. In addition,
SSD have limited block erasure count, thus the lifetime of
SSD can be measured indirectly with the erasure count in
SSD. In addition, the block erasure count can also reflect the
I/O performance of SSD to some extent.

Figure 19(a) shows the simulated block erasure count
comparison between LRU, CBLRU and CBSLRU. It can
be seen from Figure 19(a) that our proposed CBLRU and
CBSLRU can reduce the block erasure count. We believe the
reason is that the LRU algorithm brings a large number of
small random write and partition fragmentation, while our
proposed CBLRU and CBSLRU are inclined to change the
small random writes to a large sequential write, which can
effectively reduce the block erasure count, and avoid partition
fragmentation. In addition, we set a threshold for writing in the
experiments. Only the result or inverted list entries exceeding
a given threshold can be flushed to SSD. Otherwise, it will
be discarded directly, which can reduce unnecessary writes
to SSD. Furthermore, due to the static cache, the CBSLRU
algorithm can also reduce write operations to SSD. Therefore,
the block erasure count in CBSLRU is less than CBLRU. In
this experiment, the block erasure count is reduced by 59.92%
and 71.52% in CBLRU and CBSLRU compared to LRU.

Figure 19(b) presents the average access time in SSD. It
can be seen from Figure 19(b) that, as the process of retrieval

goes on, the average access time gradually decreases and to a
steady value. We believe the reason is that, in the beginning of
the experiment, the dominant operations are writes; but with
the increase of cached entries, the dominant operations are
reads. The experimental results have shown that our proposed
CBLRU and CBSLRU behavior better than LRU in average
access time of SSD. We believe that there are two main
reasons: first, our proposed CBLRU and CBSLRU can reduce
unnecessary write operations; second, CBLRU and CBSLRU
change several small random writes to a large sequential write,
which can reduce block erasure count inside SSD and improve
the performance of SSD. In this experiment, the average access
time are reduced by 13.20% and 43.83% in CBLRU and
CBSLRU compared to LRU.

VIII. CONCLUSION

In this paper, we propose an SSD-based hybrid storage ar-
chitecture and SSD-based data management policies for large-
scale search engines. We have made three contributions in this
paper. First, we analyze the I/O patterns of search engines,
and choose an appropriate cache scheme for search engines.
Second, in order to improve the I/O performance of SSD in
the two-level architecture, we propose an improved log-based
cache data management policy. Third, we propose appropriate
data replacement policies for SSD. The experimental results
demonstrate our proposed policies.

There are several interesting problems that need further
discussion. First, in our research, we assume that the index files
stored on SSD are static without any change. The situation of
the dynamic scenario is required to further study in the future.
Second, in order to reduce write operations and improve the
cache performance, we can also consider the three-level cache
scheme, namely results, inverted lists and intersections [19].
We believe that a good policy to determine when to make
intersections will further improve the performance.

ACKNOWLEDGMENTS

We thank Zhao Zhang at Iowa State University, and Zhichun
Zhu at University of Illinois at Chicago for their valuable
advices and insightful comments. This research is partially
supported by National Natural Science Foundation of China
under grants 61173170 and 60873225, National High Technol-
ogy Research and Development Program of China under grant
2007AA01Z403, Innovation Fund of Huazhong University of
Science and Technology under grants 2012TS052, 2011TS135
and 2010MS068, and CCF Opening Project of Chinese Infor-
mation Processing.

REFERENCES

[1] “Google plans,” http://www.informationweek.com/news/storage/systems/
showArticle.jhtml?articleID=207602745.

[2] “Google platform,” http://en.wikipedia.org/wiki/Google platform.
[3] G. Soundararajan, V. Prabhakaran, M. Balakrishnan, and T. Wobber,

“Extending SSD Lifetimes with Disk-Based Write Caches,” Proc. of the
8th USENIX Conference on File and Storage Technologies (FAST 10),
pp.101-114, 2010.

[4] M. Canim, G. A. Mihaila, B. Bhattacharjee, K. A. Ross, and C. A. Lang,
“SSD bufferpool extensions for database systems,” Proc. of the PVLDB
2010, vol.3, no.2, pp.1435-1446, 2010.

[5] F. Chen, D. Koufaty, and X. Zhang, “Understanding intrinsic character-
istics and system implications of flash memory based solid state drives,”
Proc. of ACM SIGMETRICS 2009, Seattle, pp.181-192, 2009.

[6] Intel Corporation, “Understanding the flash translation layer (FTL) spec-
ification,” Technical Report AP-684, 1998.

[7] J. Kim, J.M. Kim, S.H. Noh, S. Min, and Y. Cho, “A Space-Efficient Flash
Translation Layer for Compactflash Systems,” IEEE Trans. on Consumer
Electronics, vol.48, no.2, pp.366-375, 2002.

[8] J. Kang, H. Jo, J. Kim, and J. Lee, “A superblock-based flash translation
layer for NAND flash memory,” Proc. of the 6th ACM IEEE International
conference on Embedded software, Seoul, Korea, pp.161-170, 2006.

[9] S. Lee, D. Park, T. Chung, D. Lee, S. Park, and H. Song, “A log buffer
based flash translation layer using fully associative sector translation,”
ACM Trans. on Embedded Computing Systems, vol.6, no.3, pp.18-es,
2007.

[10] A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: A Flash Translation
Layer Employing Demand-based Selective Caching of Page-level Address
Mappings,” Proc. of the 14th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS
09), Washington, DC, USA, vol.44, no.3, 2009.

[11] J. Matthews, S. Trika, D. Hensgen, R. Coulson, and K. Grimsrud. Intel
R turbo memory: Nonvolatile disk caches in the storage hierarchy of
mainstream computer systems. Transactions on Storage, 4(2):1-24, 2008.

[12] Panabaker, Ruston. Hybrid Hard Disk and ReadyDrive Technology:
Improving Performance and Power for Windows Vista Mobile PCs.
http://www.microsoft.com/whdc/ system/sysperf/accelerator.mspx.

[13] S. Park, D. Jung, J. Kang, J. Kim, and J. Lee, “CFLRU: a replacement
algorithm for flash memory,” Proc. of the 2006 International Conference
on Compilers, Architecture and Synthesis for Embedded Systems, Seoul,
Korea, pp.234-241, 2006.

[14] H. Jung, H. Shim, S. Park, S. Kang, and J. Cha, “LRU-WSR:integration
of LRU and writes sequence reordering for flash memory,” IEEE Trans.
on Consumer Electronics, vol.54, no.3, pp.1215-1223, 2008.

[15] H. Kim and S. Ahn, “BPLRU: A buffer management scheme for
improving random writes in flash storage,” Proc. of the 6th USENIX
Conference on File and Storage Technologies (FAST 08), San Jose,
California, pp.1-14, 2008.

[16] Q. Gan and T. Suel, “Improved techniques for result caching in web
search engines,” Proc. of the 18th International Conference on World
Wide Web (WWW 09), Madrid, Spain, pp.431-440, 2009.

[17] T. Fagni, R. Perego, F. Silvestri, and S. Orlando, “Boosting the perfor-
mance of Web search engines: Caching and prefetching query results by
exploiting historical usage data,” ACM Trans. on Information Systems,
vol.24, no.1, pp.51-78, 2006.

[18] P. Saraiva, E. de Moura, N. Ziviani, W. Meira. R. Fonseca, and B.
Ribeiro-Neto, “Rank preserving two-level caching for scalable search
engines,” Proc. of the 24th Annual SIGIR Conference on Research
and Development in Information Retrieval (SIGIR 01), New Orleans,
Louisiana, USA, pp.51-58, 2001.

[19] X. Long and T. Suel, “Three-level caching for efficient query processing
in large web search engines,” Proc. of the 14th International Conference
on World Wide Web (WWW 05), Chiba, Japan, pp.369-395, 2005.

[20] B. Huang and Z. Xia, “Allocating inverted index into flash memory for
search engines,” Proc. of the 20th International Conference Companion
on World Wide Web (WWW 11), Hyderabad, India, pp.61-82, 2011.

[21] T. Pritchett and M. Thottethodi, “SieveStore: a highly-selective,
ensemble-level disk cache for cost-performance,” Proc. of the 37th Annual
International Symposium on Computer Architecture, Saint-Malo, France,
pp.163-174, 2010.

[22] “UMass Trace Repository,” http://traces.cs.umass.edu/index.php/Storage/
Storage.

[23] “Lucene,” http://lucene.apache.org/java/docs/index.html.
[24] “SSD Trim,” http://www.ssdtrim.com.
[25] H. Kim and U. Ramachandran, “FlashLite: a userlevel library to enhance

durability of SSD for P2P File Sharing,” Proc. of the 29th IEEE
International Conference on Distributed Computing Systems (ICDCS 09),
Montreal, QC, pp.534-541, 2009.

[26] “FlashSim,” http://csl.cse.psu.edu/?q=node/322.

