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Abstract. Data and storage management is turning to distributed due
to the huge increase in data volumes. To satisfy users’ requirements and
preferences, advanced query operators, such as skyline, have been intro-
duced and implemented. Skyline offers users with interesting objects,
which has been explored in centralized, distributed and peer-to-peer
(P2P) systems. However, keyword-matched skyline has not been con-
sidered in distributed and P2P systems. This paper introduces keyword-
matched data skyline algorithms in P2P systems. Differing from other
operators, skyline algorithms are devised to exploit its properties to re-
duce traversed peers for a query. By partitioning data space and using
distributed hash tables (DHTs) and Bloom filters, we design new algo-
rithms, Nk-sky and Ck-sky, to reduce the required traversed peers to
answer keyword-matched data skyline queries. We apply the algorithms
on Chord as an example of DHT overlay P2P systems. Experimental
results show a significant reduction of traversed peers with the Cover-set
tuples algorithm Ck-sky.

Keywords: Peer-to-peer system, skyline query, keyword-matched
skyline.

1 Introduction

With the fast growing and huge volumes of data in the current Internet environ-
ment, advanced queries in distributed systems have been introduced, studied and
designed. Skyline operator introduced by Börzsönyi in [1] is an example of such
advanced queries. It recommends some interesting data objects to the users. The
interesting objects are dominating objects that a user would be more interested
in than the other objects. On the other hand, the processing limitations of cen-
tralized systems lead to distributed system designs. Different distributed systems
have been suggested and used to solve the problems efficiently. In peer-to-peer
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Fig. 1. An example of keyword-matched skyline

(P2P) systems, distributed hash tables (DHTs) have been discovered; and dif-
ferent network overlays have been designed (e.g. Content Addressable Network
(CAN) [2], Chord [3] and Harmonic Ring (HRing) [4] ). A query nature may
result in a preference of network overlays to others. Skyline queries, like others,
have been studied in different distributed systems and P2P system overlays (e.g.
CAN as in [5], and BAlanced Tree Overlay Network (Baton) as in [6][7]).

A skyline point is a point that is not dominated by any other point in all
dimensions. In general, the domination in one dimension is the user preference
in that dimension (e.g. cheaper, lower mileage, and shorter distance). As an
example, a user may be interested in buying a cheap used car with low mileage
as shown in Fig. 1. The skyline query will return the black-filled rounded points
in Fig. 1. However, a user may be interested in skyline for only points with some
features. For example, a dealer may have many used cars with different features.
Some cars come with cruiser controls, cd players, and/or airbags etc. A user, who
is interested only in cars with cruiser control, may not be interested in the results
that do not consider their preferences. The black-filled rectangular points shown
in Fig. 1 are what that user expects. Another example may come from a user who
is only interested in a restaurant with some dishes (e.g. sushi, seafood). Some
restaurants may serve sushi but some restaurants may not. Thus, the traditional
algorithms may result in skyline of no interest to the user. A skyline for only
restaurants that serve sushi is what a user needs to see. These types of queries
are called keyword-matched skyline queries.

Another example, consider some online scientific data analysis system where
different participants publish their findings and use others’ findings. Each partic-
ipant may focus on different parts of the experiments. Keywords-matched skyline
can help such scientists identify outstanding data and results of their interests.
There could be large numbers of keywords-matched skyline queries triggered by
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different scientists in a short time; thus, it is crucial to respond to such queries
quickly using as few as possible of peers.

In distributed systems, traditional skyline algorithms do not consider key-
words in their design. The work in [5] [6] [7], for example, considers values in
dimensions to distribute tuples. These studies exploit prune-ability and incompa-
rable partitions of skyline queries. Nevertheless, they do not consider keywords.
Modifying them to satisfy users’ requirements by ignoring undesired discovered
points results in traversing unneeded peers. On the other hand, traditional key-
word search query [8] and Napster [9] ignore skyline incomparability and prune-
ability features. To exploit skyline pruning ability and incomparability as well
as keyword search algorithms, this paper devise the keyword-matched skyline
algorithms to combine keyword search and skyline algorithms to efficiently an-
swer keyword-matched skyline. The algorithms keep some order of the peers to
exploit prune-ability and incomparability. They also use DHT functions, Bloom
filters and Cover-set features to keep track of points’ and peers’ keywords as
explained in Section 3.

The contributions of this paper are as follows:

• Bloom filters are used to figure out the candidate peers for query keywords
with cover-set tuples and nodes.

• Keyword-matched skyline algorithms are designed and implemented in P2P
systems.

• Experiments have been carried out and show that the proposed approaches
resulted in reduction of traversed peers while preserving progressiveness.

The rest of the paper is organized as follows. We first discuss related work in
Section 2. Problem definition and algorithms are discussed in Section 3. Section
4 discusses experiments and our findings. We conclude our paper in Section 5.

2 Related Work

Börzsönyi’s paper [1] was the first work to introduce skyline into databases.
Block Nested Loop (BNL) uses a window to compare all points and discover the
skyline points. Nearest neighbor (NN) [10] used R-trees and a to-do list to get
skyline; branch and bound skyline (BBS) [11], however, uses R-trees and a heap
to get rid of duplicates introduced in NN.

Because BNL, BBS, NN and the other centralized algorithms are not efficient
for distributed and P2P systems, the distributed algorithms have been suggested.
In [5], for example, data are distributed vertically. The traditional skyline is
retrieved using a round-robin on the presorted attributes. In the feedback-based
distributed skyline algorithm (FDS) [12], the coordinator iteratively contacts
the other nodes providing a feed-back. Some algorithms [6][13] have converted
multi-dimensional data into a single-data index and adapted it into P2P.

Other types of skyline queries (e.g. Subspace skyline, constrained skyline
queries) in P2P systems have also been considered in literatures. For constrained
skyline, data space is partitioned horizontally in the Distributed SkyLine query
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(DSL) [14]. SkyFrame [7] uses greedy and relaxed skyline search on Baton (a
balanced tree structure for peer-to-peer networks). In the Parallel Distributed
Skyline (PaDSkyline) [15] and SkyPlan [16], the querying peer collects the mini-
mum bounding rectangles (MBRs) from other peers, and with different measures
(e.g. weighted edges and spanning trees), a plan is mapped for incomparable
peers to work in parallel.

Skypeer [17] and Distributed Caching Mechanism (DCM) [18] are meant for
subspaces skyline queries in distributed systems. A super-peer architecture is
used for Skypeer. They defined the extended skylines which are collected by
super-peers from the other peers. Queries are submitted to a super-peer which
contacts the other super-peers for their subspace skyline. DCM explores caching.
The results of subspaces queries are cached in peers using a distributed cache in-
dex (DCI) on Baton or Chord. The subspace queries use the DCI to forward next
subspace skyline queries. Hose and Vlachou [19] have studied skyline processing
in distributed systems in more details.

Even though the above algorithms answer skyline query efficiently, they are
not designed to consider keyword-matched skyline. They all only use quantity
values in the attributes to take advantage of skyline feature of prune-ability and
incomparability. Attributes that may be boolean is not supported. A modifica-
tion of those algorithms to satisfy user’s requirements can reflect inefficiency.

Keyword-matched skyline has been introduced in [20]. It uses an R-tree. While
R-trees are efficient for centralized systems, they are inefficient for P2P systems
due to the heavy data volumes required for maintenance. In this paper, we
investigate the keyword-matched data skyline in P2P systems using Chord [3]
as our overlay. Other overlay structures may also be applied.

For keyword query, the traditional techniques either used centralized search
as Napster [9], query broadcasting as Gnutella [21], or well-known naming such
as Freenet [22]. They are not efficient for skyline queries because they do not
exploit skyline properties, such as pruning ability and incomparability.

To the best of our knowledge, keyword-matched skyline has not been consid-
ered in distributed and P2P systems. Our aim is to minimize the visited peers
in the network while preserving progressiveness.

3 Keyword-Matched Skyline Queries in P2P Systems

Some formalizations to keyword-matched skyline are presented in Section 3.1.
Algorithms for keyword-matched skyline in P2P systems will be discussed in the
next three Sections.

3.1 Problem Definition

In this subsection, some definitions are stated for keyword-matched skylines.
Without loss of generality, we assume minimum values of attributes are preferred
(e.g. cheaper is preferred to expensive, less mileage is preferred to high mileage,
etc). For maximum value preferences, the inverse of the values can be used.
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A tuple t in a d-dimensional space Dd is defined as <V,W> where V =
(v1, v2, ..., vd) is a value vector of d-numerical values; and W = (w1, w2, ..., wk)
is a set of k keywords for the tuple t. In addition, the value vector of a tuple ti
is denoted by ti.V , while its set of keywords is denoted by ti.W .

Definition 1. A keyword-matched tuple to a query keyword (Qk(D
d,W )). For

a query q with a set of query keywords q.W , a tuple t is a keyword-match tuple
to the query q if and only if ∀w ∈ q.W , w∈ t.W .

Definition 2. Domination. Let t and t′ be two tuples in Dd, where t.V =
(v1, v2, ..., vd) and t′.V = (u1, u2, ..., ud). Then, t dominates t′ (t ≺ t′) if and
only if ∀i, vi ≤ ui and ∃i, vi < ui. Conversely, t does not dominate t′, denoted
t �≺ t′ if and if only ∃i, vi > ui.

Definition 3. Skyline Tuple. In skyline operator (Qs(D
d)), a tuple t in Dd is

a skyline tuple if and only if � ∃t’∈ Dd; t′ ≺ t

Definition 4. A Keyword-matched Skyline Tuple. Let A be all keyword-matched
tuples to a query q with keywords W. A tuple t ∈ A is a keyword-matched skyline
tuple to the query q if and only if ∀t′ ∈ A; � ∃t′ ≺ t.

Definition 5. A keyword-matched skyline query (Qks(D
d,W )). Given a set of

query keywords W and a dataset Dd, a keyword-matched skyline query denoted
as Qks(D

d,W ), retrieves the set of skyline tuples whose each textual attribute
contains all words of W. Thus, the following equivalent rule is true:

Qks(D
d,W ) ≡ Qs(Qk(D

d,W )) (1)

Definition 6. Let m be minx ∈ D(xmin), Initial Skyline Peers P and Candidate
Skyline Points M as

P = {Pi|∃x ∈ DPisuch that xmin = m}
M = {x|x ∈ DP ∧ xmin = m},
where DP =

⋃
Pi∈P DPi .

Theorem 1. If SD and SM are the skylines of D and M respectively, then SM ⊆
SD and SM �= φ.

Proof. From Definition 6 for M, for any x ∈ SM , x is not dominated by any
other point in M. Suppose m′ = min(x′

min) ∀ x′ ∈ D −M . As m < m’, x can
not be dominated by any x′ ∈ D − M . Therefore, x is not dominated by any
other point in D, i.e., x ∈ SD. Thus, we have SM ⊆ SD . Since M is not empty,
hence SM �= φ.

Theorem 2. A tuple t1 with a minimum value t1.vi in a dimension i can not
be dominated by any point t2 with a minimum value t2.vj in any dimension j
where t1.vi < t2.vj.

Proof. Let’s assume t2 dominates t1. Thus, t2.vi ≤ t1.vi. Since t2.vi ≤ t1.vi ⇒
t2.vi < t2.vj . This contradicts that t2.vj is the minimum value of t2. If t2.vi is
the minimum value of y, the condition of our theorem is not satisfied. On the
other hand, if t2.vi > t1.vi, t2 does not dominate t1.
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In the next three sections, we present three algorithms: a baseline (Ch-isky)
which is based on a state of the art, and two new algorithms: Node-based keyword
skyline (NK-sky) and Cover-based keyword skyline (Ck-sky). Definition 6 and
Theorem 1 of isky[6] [13] are modified here to fit to our problem. Note that nodes
and peers are used interchangeably to mean peers in this paper.

3.2 Chord-Based isky (Ch-isky)

The baseline approach is based on isky [6] [13]. It is applied on Chord overlay
which we call Ch-isky. The algorithm is shown in Algorithm 1. As in isky, data
values in each dimension are assumed to be in the period [0, 1]. The period [1,
d+1] is distributed among peers with an equal continuous periods. Each peer is
responsible of the next period in clockwise fashion starting with peer 0. A tuple
is looked for its minimum value in all of its dimensions. The sum of the minimum
value and the dimension it is found in is used to determine its destination peer
when it is distributed. If the minimum value is found in more than one dimension,
the lowest dimension is taken.

Once a query is triggered, it blindly travels through nodes exploiting prune-
ability. Lines [3-7] in Algorithm 1 require the querying peer to first broadcast the
query to all Initial Skyline peers P (i.e. all peers that include the dimension values
{1,2, ... ,d} in their period). In line 8, the skyline tuples are calculated using the
volume filter and the min-max pruning ability to reduce calculations. In line 9,
a new volume filter and a new min-max values are found using Equations 3 and
4. Line 10, the keyword-matched skyline tuples are sent to the querying peer
and then returned to the user if these tuples exactly form a skyline. A volume
filter and the min-max pruning are used. In lines [11-13], the query travels from
a peer to the next peer in a clockwise fashion.

Our next two algorithms are based on the DHTs for the keywords and Bloom
filters to minimize the number of candidate peers for keyword-matched skyline
query. Even though Bloom filters can introduce few false positives, they do not
affect the correctness of our algorithms as shown later.

Bloom Filters. To summarize membership in a set, a hash-based data struc-
ture called a Bloom filter [8] is used. A peer A can send its Bloom filter for its
elements set EA to another peer B with an element set EB instead of sending its
elements set. Thus, it reduces the amount of communication required for a peer
to determine A ∩B. The membership test will never return false negatives, but
it may return false positives with a tunable, predictable probability as shown
in Equation 2 [8]. The results of the intersection in a peer EB with EA will
contain all of the true intersection and may have also a few (false positive) hits
that are only in EB and not EA. As the size of the Bloom filter increases, the
number of false positives falls exponentially. Equation 2 predicts the probability
of a false positive pfp when an optimal choice of hash functions is given, and
the Bloom filter bits m, and the number of elements in the set n are also given.
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Algorithm 1. Ch-isky: Chord-based isky algorithm

1: Input: MinMax-filter, VDR, Querying-Peer, keywords
2: BEGIN
3: if QueryingPeer then
4: for each Peer P includes an integer (1 to D) in its period do
5: send Keyword-matched-Skyline-Query
6: end for
7: end if
8: Calc-key-matched-sky-using-VDR-MinMax()
9: Calc-VDR-and-MinMax() /* using Equations 3, 4 */
10: Send-results-to-query-peer
11: if min(nextPeer) �> MinMax then
12: send-query-to-next-peer(MinMax,VDR)
13: end if
14: END

Thus, to maintain a low false-positives probability, the Bloom filter size needs
to be proportional to the number of represented elements.

pfp = 0.6185m/n (2)

3.3 Node-Based Keyword-Matched Skyline Algorithm (Nk-sky)

In this section, we propose Nk-sky, a node-based keyword-matched skyline algo-
rithm. For construction of Nk-sky, tuples are distributed to the peers according
to the sum of their minimum values and dimension of the minimum value as
explained above in Ch-isky. Each peer builds its keyword set. The peer’s key-
word set is the union of all points’ keywords in a peer. It hashes each of its
keywords using the DHT functions and sends them along with the peer’s id to
the keyword responsible peers. The keyword responsible peer hashes the node
ID into the Bloom filter of that keyword.

The Nk-sky skyline query runs through two stages: 1) discovering candidate
peers, and 2) skyline calculation.

1) Discovering Candidate Peers. Once the query is triggered, the querying
peer hashes one keyword using the DHT function and sends the query to the
responsible peer. The responsible peer gets the query peer Bloom filter for that
query keyword and sends it to the next keyword’s responsible peer. Each respon-
sible peer receiving a Bloom filter would do the intersection with its keyword’s
Bloom filter and sends the results to the next responsible peer until all query
keywords are processed. The last peer sends the results of the intersections to the
querying peer. The results are the nodes with all query keywords. There might
be few false positives but they will not affect correctness of the query results.
For each keyword, it may require at most O(log n ) lookup messages. Thus, for
k query keywords, at most O(klog n) lookup messages may be expected.
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2) Skyline Calculations. At this stage, candidate peers, in addition to a few
false positives, are known. The false positives will only affect traversing those
peers unnecessarily but they will not affect the correctness of the results. The
skyline query chooses peers from the candidates to broadcast to. A peer is chosen
if it is the closest above or equal candidate peer to any peer responsible of the
periods that include {1,2, . . .,d}. A peer c is the closest above or equal candidate
to another peer responsible of a value i if and only if there is no other peer in
the set that has a value v closer to i than any value in c and both v and c greater
or equal to i. For example, suppose a peer p is responsible of period [1.8, 2.2) if
p is in candidate peers, the query is sent to it because it includes 2. If p is not in
the candidate peers, the query is sent to the closest candidate peer within the
period [2.2, 3). Because there are at most d peers that include i ∈ {1,2, ... ,d},
the query broadcasts to a maximum of d candidate peers . All query processing
is done in parallel.

In Nk-sky, a peer processes the keyword-matched skyline query and sends its
results to the querying peer. The querying peer returns the results to the user if
no future point can dominate them progressively. The processing peer also sends
the query, a max-min value filter [6][13] and a Volume of Dominating Region
(VDR) [23] to the closest above candidate peer in a clockwise fashion.

SFglobal = minx∈S(xmax) (3)

In Equation 3, the min-max-value filter (SFglobal) is used because we use min-
imum value as opposed to maximum value used in [6][13]. It is obtained from
the already found skyline points (S). A peer is pruned if its minimum value is
greater than SFglobal. VDR, shown in Equation 4, is used to prune points within
a peer. It is expected to prune more points than others due to its volume.

V DRp =

d∏

i=1

(bi − pi) (4)

where bi is the maximum value in dimension i, and pi is the value of p in
dimension i. A peer and the following peers can be pruned if its minimum value
is greater than SFglobal.

Lemma 1. Keyword-matched skyline results of Nk-sky are correct and complete.

Proof. Correctness. Let t1 and t2 be two tuples with vi1 and vi2 be values in di-
mension i, respectively. Let t1 dominates (≺) t2. If t1 and t2 have their minimum
values in dimension i (i.e. vi1 and vi2, respectively), t1 is visited before t2. Thus,
t2 will be pruned. On the other hand, lets t1 and t2 have their minimum values
in different dimensions (i.e. vi1 and vj2, respectively). From Theorem 2, in the
algorithm, t2 will not be declared as a keyword-matched skyline tuple until t1 is
seen. t1 will prune t2. Thus, no false skyline tuple will be produced.

Completeness. All tuples are checked. A peer is pruned if its minimum values
are greater than the maximum value of a skyline tuple found so far. No tuple is
pruned if not dominated.
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Algorithm 2. Ck-sky: cover-based keyword-matched skyline algorithm

1: Input: MinMax-filter, VDR, QueryingPeer, keywords, Peers-to-be-traversed
2: BEGIN
3: if QueryingPeer then
4: /* first stage */
5: Peers-to-be-traversed = get-candidate-peers-using-BloomFilter()
6: for all P ∈ Peers-to-be-traversed do
7: if p closest above or equal peer to an integer (1 to D) then
8: send keyword-matched-skyline-query
9: end if
10: end for
11: end if
12: /* Second stage */
13: Calc-keyword-matched-skyline-using-VDR-MinMax()
14: Calc-VDR-and-MinMax() /* using Equations 3, 4 */
15: Send-results-to-query-peer
16: nextPeer = closest-candidate-peer-in-an-increase-order
17: if min(nextPeer) �> MinMax then
18: send-query-to-next-peer(MinMax,VDR)
19: end if
20: END

3.4 Cover-Based Keyword-Matched Skyline Algorithm (Ck-sky)

Using nodes instead of tuples in Nk-sky in Section 3.3 seems to be natural and
more attractable to reduce false positives according to Equation 2. However, in
reality, it is not the case for two reasons as shown in the experiments:

1) Node’s keywords produced by OR-ing do not mean a node have a tuple
with all query keywords.

2) Skyline query algorithms use pruning ability, which reduces the peers with
query keywords as well as false positives from the candidates.

We propose Ck-sky, a cover-based keyword-matched skyline algorithm, as shown
in Algorithm 2. In Ck-sky, a keyword-matched skyline query also runs in the
same two stages of Nk-sky. However, we use tuple keywords instead of node
keywords in Ck-sky. In lines [3-11], the first stage is presented. Thus, instead of
sending only a node id to the keyword responsible peer, the tuple id is also sent.
Bloom filter is used for the tuple ids. In the first stage, the querying peer gets
the candidate peers using bloom filter as shown in line 3. In lines [6-10], instead
of going to the dimension values peers discussed in Ch-isky, only the candidate
peers closest to the dimension values peers are used to start the query. Lines
[12-19]are responsible of the second stage. Line 13 calculates the skyline using
the VDR and MinMax filters. The new VDR and MinMax are calculated in line
14 using Equations 3 and 4. The results are sent to the querying peer in line 15.
The next peer to visit is calculated in line 16. In line 18, the query is sent to
next peer if it is not pruned.
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To reduce the number of tuples sent and maintained by the Bloom filter, we
suggest Cover set.

Cover Tuple: A tuple t is said to be a cover for a tuple t′ if and only if
∀w ∈ t′.W , w∈ t.W .

Mutual Cover Tuple Set: All tuples that cover each other in set (i.e. they
have the same keywords).

Cover Set: A cover set is the set of all tuples that have no cover in a node in
addition to a tuple from each mutual cover tuple set.

In Ck-sky, a peer can send its Cover set instead of sending all tuples at the
distribution phase. In the first stage, tuples are considered in the Bloom filter
as opposed to nodes in Nk-sky. The second stage are done as in Nk-sky.

In the first stage, a query may need O(klog n) lookup messages to reach to
all k query keyword peers for their Bloom filters. It is, however, optimized by
visiting keywords peers in order (in a clockwise order).

In the second stage, for an m candidate peers, a maximum of m jumps may be
needed. Each jump may require O(log n) lookup messages. Due to the traversal
order of our algorithms, the larger distance between candidate peers, the larger
number of peers pruned. The portion of the m candidate peers that may be
pruned, however, depends on the tuples in each peer.

Lemma 1 is also applicable for both Nk-sky and Ck-sky. The following Lemma
is complement to Lemma 1.

Lemma 2. Covered set does not affect the correctness of the keyword-matched
skyline query.

Proof. Let’s assume a peer p with a tuple t. t is either in the Cover set of p or not.
If t is in Cover set, then p will be included in the candidate peers. Let’s assume
t is not in the Cover set of p. This means there is t′ that covers t if t is keyword-
matched tuple to a query keyword q (Definition 1). Since (∀w ∈ q.W→w ∈ t.W
) and (∀w′ ∈ t.W→w′ ∈ t′.W ) =⇒ (∀w′′ ∈ q.W→w′′ ∈ t′.W ). Thus, the peer p
will be included in the candidate peers.

4 Performance Evaluation

In this section we evaluate our algorithms by checking the reduction of the visited
peers for keyword-matched skyline queries. For a thorough investigation, we use
synthetic datasets in our experiments to show the reduction in traversed peers
for different variances (parameters). Table 1 summarizes the used parameter
settings. The parameters include value distribution, dimensionality, cardinality,
query keywords size, network size, and skew factor of the word distribution.

As in [1], for the experiments, we generated three types of synthetic datasets:
(i) independent datasets, (ii) correlated datasets and (iii) anti-correlated datasets
with 1000 distinct keywords.
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Table 1. Parameter settings in the experiments

Parameters Values

Cardinality(N) of tuples 100k, 200k, 400k, 600k, 800k, 1M

Dimensionality 2, 3, 4, 5

The number of query words (k) 1, 2, 3, 4, 5

Zipf skew factor (θ) 0.0, 0.2, 0.4, 0.6, 0.8, 1.0

Distribution(for values) independent, correlated, anti-correlated

Tuple’s keywords 6

Network size (no. of peers) 100, 1000, 2000, 3000, 4000
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Fig. 2. Visited Peers vs. Number of Tuples

The three types of datasets are usually used for the evaluation of skyline. In
the independent datasets, the values in each dimension is independent of each
other; while in correlated datasets, the values are correlated as in a good grades
of one student may come with more papers published. On the other hand, in
anti-correlated datasets, a better value in one dimension will probably mean
a worse value in the other dimensions as in the hotel example where a closer
distance hotel to the beach will be a more expensive hotel.

The experiments were carried out on Intel(R) Core(TM) i3 CPU M350 (2.27
GHz), 3 GB RAM using Peersim-1.0.5 [24].

Our Ck-sky has shown to perform better than the other two algorithms in
reducing the visited peers for a query.

4.1 The Effects of Cardinality

In this section, we show our findings with experiments to evaluate scalability
with respect to dataset cardinality. Our experiments were done for various car-
dinalities with the range [100k,1M] and the default parameters shown in Table
1. Fig. 2 depicts our findings.

It shows that in all distribution of values (independent, correlated, and anti-
correlated), Ck-sky preforms better. These results come from the fact that, in
Ck-sky, visited peers only will probably contribute to the answer to the query.
Using the minimum values to distribute tuples also contribute to minimizing the
traversed peers by pruning peers that definitely can not contribute to the answer.

Nk-sky performs better than Ch-isky because in Nk-sky, only suspected peers
are visited. Ch-isky, however, visits all peers in order of minimum values until
it finds a pruning answer. In the independent and anti-correlated distributions,
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Fig. 3. Visited Peers vs. Dimensions
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Fig. 4. Traversed Peers vs. Network Size

the curves for the Ch-isky and Nk-sky algorithms are higher than the curves in
correlated. In correlated datasets, fewer skyline points are expected due to their
correlations; and they can be found in early peers.

4.2 The Effects of Dimensionality

As the number of dimensions (attributes) increases, an increase in skyline points
is expected. Larger variation among tuples is expected when higher dimensions
are used. In this section, we show the effect of dimensions on the number of
traversed peers in our algorithms. Our experiments are done with different di-
mensions [1D,2D ... 5D] with default values shown in Table 1. Fig. 3 goes along
with our expectations that as dimensions increase, the number of traversed peers
increases. Ck-sky is still better than the other algorithms. Ck-sky’s increase as
the dimensions increase is also expected as the pruning ability decreases with
higher dimensions. In anti-correlated distribution, visited peers for all algorithms
show a slight increase in traversed peers because the expected skyline points are
also higher. All algorithms do better in correlated database distribution than
the others because the correlation between values results in a better pruning. As
stated earlier, Ck-sky visits only peers that will probably have skyline points.

4.3 The Effects of Network Size

As network size increases, we expect traversed peers to increase. How does the
increase vary with our algorithms? In this section, we answer this question. Fig. 4
shows that the increase in Ch-isky is with a slope of one. The OR-ing used in the
Nk-sky algorithm has more effects as the number of tuples in a peer decreases due
to the increase of network size. Nk-sky becomes better than Ch-isky depending
on the network size and type of data set. However, the affect is not as good as the
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Fig. 5. Traversed Peers vs. Query Keyword Size
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Fig. 6. Traversed Peers vs. Skewness

Ck-sky algorithm. Ck-sky traversed peers increase is expected as skyline tuples
are distributed to more peers when network size increases. Thus, the increase
in traversed peers in Ck-sky for the three types of data sets complies with [1].
Skyline tuples are more for the anti-correlated than the other models. Traversed
peers increase in this model with our experiments for the same reason. Its effect
is less for the other models due to the wrong peers traversed.

4.4 The Effects on the Size of Query Keywords

Query keywords can also affect traversed peers. As query keywords increase,
fewer tuples would probably satisfy the query. This is also shown in Fig. 5 for Ck-
sky. Due to the false peers that result from the other algorithms, more peers are
visited. For Ck-sky and Nk-sky they will have the same number of visited peers
when the query keyword is one because Nk-sky will not have false peers. False
peers increase as we go farther. Ch-isky can probably have the same traversed
peers at the beginning due to the probability that a peer will have tuples with
fewer keywords than many keywords. The difference becomes big as the system
does not have a tuple with the query keywords. However, Ck-sky can discover
this at the first stage.

4.5 The Effects of Word Distribution

The results in Fig. 6 might be surprising because more traversed peers are ex-
pected in Ch-isky and Nk-sky because more tuples will satisfy the query. The
reduction should not be surprising for two reasons: 1) Even though more peers
are supposed to have satisfied tuples, they are contained in the unnecessary peers
that are traversed with low zipf factor. 2) The skyline algorithms exploit prun-
ing. Thus, because the probability of visiting a real candidate peer increases and
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the prune-ability increases for the wrong peers. However, this reduction is not
big due to the big probability of a wrong visited peer. The increase in traversed
peers in Ck-sky is due to more tuples are expected to be in the solution. This
is shown more obviously in anti-correlated distribution where more tuples are
expected. For independent distribution, the number of traversed peers is slightly
higher than correlated distribution due to the prune-ability and the results size.

5 Conclusion

This paper addresses keyword-matched skyline in peer-to-peer systems. Tuples
may have keywords in addition to value (quantity) attributes. Keywords are
boolean attributes that a tuple may have ormay not. The designs of the traditional
skyline algorithms only consider value attributes in all tuples. By specifying some
keywords in the query, a user needs a skyline for only tuples with these keywords.
It is called keyword-matched skyline. Modifying traditional skyline algorithms is
inefficient. The traditional keyword algorithms are not good for keyword-matched
skyline because they do not exploit prune-ability found in skyline queries.

In this paper, node and tuple-based algorithms are designed to solve keyword-
matched skyline in peer-to-peer systems efficiently. The algorithms use DHTs
functions and Bloom filters to minimize the number of traversed peers. Cover
sets are also defined for peer’s tuples to reduce false positives peers resulted
from Bloom filters. Results show that tuple-based cover set (Ck-sky) algorithm
performs better than the other algorithms. It considers only necessary tuples
(cover set) in a node when keywords are hashed. Even though we studied the
keyword-matched skyline in P2P systems in this paper, other issues could also
be investigated, such as keyword-matched skyline in streams, subspaces and
probability of keyword-matched skyline. Those issues are to be considered for
the future work.
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