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Abstract. To preserve data privacy and integrity, sensitive data has to be 

encrypted before outsourcing to the cloud server. However, this makes keyword 

search based on plaintext queries obsolete. Therefore, supporting efficient 

keyword based ranked searches over encrypted data became an open challenge. 

In recent years, several multi-keyword ranked search schemes have been 

proposed in trying to solve the posed challenge. However, most recently 

proposed schemes don't address the issues regarding dynamics in the keyword 

dictionary. In this paper, we propose a novel scheme called A-MRSE that 

addresses and solves these issues. We introduce new algorithms to be used by 

data owners each time they make modifications that affects the size of the 

keyword dictionary. We conduct multiple experiments to demonstrate the 

effectiveness of our newly proposed scheme, and the results illustrates that the 

performance of A-MRSE scheme is much better that previously proposed 

schemes.  
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1   Introduction 

Cloud computing is a model for enabling ubiquitous, convenient, on-demand 

network access to a shared pool of configurable computing resources, such as 

networks, servers, storage, applications and services, which can be rapidly 

provisioned and released with minimal management effort or service provider 

interaction [1]. Cloud computing provides affordable and convenient ways to store 

and manage huge amounts of data generated by data owners. However, even with all 

of its advantages, cloud computing still faces great challenges following a serious 



threat posed to data owners about security and privacy, especially when it comes to 

sensitive data. Encryption of data before shipping to the cloud server offers a viable 

solution to data owners regarding data integrity and confidentiality. However, 

keyword searches based on plaintext queries became obsolete on encrypted data, and 

data owners have to download the entire database they own and start decrypting files 

one by one, looking for those of interest. It goes without saying that this is too much 

to bear, especially in today's pay-as-you use fashion. 

Searchable encryption is the earliest scheme that utilizes keyword search over 

encrypted data [2] [3]. Solutions proposed by these schemes resolved the issues 

concerning security and privacy of data. However, they also introduced more 

obstacles as they encountered huge computation and communication overheads. 

These overheads resulted from the fact that the proposed solutions do not offer any 

ranking mechanism after performing a keyword search as they based on disjunctive 

searches. To resolve this issue, another era of ranked keyword search schemes over 

encrypted came to the rescue. Single keyword ranked search [4] was among the first 

published works providing a practical implementation. It fulfilled its designed goals 

as far as ranked searches are concerned. However, supporting only a single keyword 

search from thousands of encrypted files was not an efficient solution that data 

owners anticipated for a while. 

Recently, a number of research works, such as [5] [6], have been done in order to 

facilitate multi-keyword queries over encrypted cloud data and they also support 

result ranking. MRSE [1] is one of the earlier works crowned in supporting multi-

keyword ranked queries over encrypted data. It also provides a viable solution that 

works under practical implementation. Most of the recent works on multi-keyword 

ranked searches don’t address the issues regarding any future modifications that will 

affect the size and content of the keyword dictionary. There is a large computation 

and communication overhead posed to data owners each time they modify their 

keyword dictionaries. As a privacy requirement, two query vectors resulting from 

similar set of keywords cannot be the same. Hence, the cloud server won't be able to 

determine if they come from the same set of keywords. However, the cloud server can 

still determine due to the fact that finally they will result into similar sets of ranked 

files, although they look different upon submission. 

In this paper, we propose a new scheme called A-MRSE in order to resolve the 

resulting issues of modifications on keyword dictionaries. In our newly proposed 

scheme, we consider both real life scenarios where the data owners can either insert or 

remove certain keywords from the dictionary. We propose new algorithms that can be 

used each time the data owner makes these changes. They present minimum 

communication and computation overhead. 

The contributions of this paper can be summarized as follows: 

 We design a novel scheme that is adaptive and supports any modification 

made on the keyword dictionary, either inserting or removing keywords with 

minimum overhead. 

 We improve security of the ranked results by sealing the cloud server from 

any form of statistical attacks. 

The rest of this paper is organized as follows. Section 2 introduces our A-MRSE 

scheme, which is followed by results and a discussion in Section 3.  Section 4 

describes related works, and we conclude with future works in Section 5. 



2   Adaptive Multi-Keyword Ranked Search over Encrypted 

Cloud Data 

In this section, we will present our adaptive multi-keyword ranked search over 

encrypted cloud data (shorted as A-MRSE) scheme. In order to quantitatively 

evaluate the coordinate matching like in MRSE, we adopt “inner product similarity” 

in our work as well. Also like in MRSE [1], we define an index vector for each file 

based on the keywords it contains from the dictionary; two invertible matrices and a 

bit vector are also used for index vector encryption and trapdoor generation. However, 

our work solves the issue with MRSE in a sense that it allows more keywords to be 

added in the dictionary as well as some of them to be removed from it. The detailed 

design of A-MRSE scheme includes the following six aspects. 

(1) InitialSetup: The data owner selects a set of n keywords from the sensitive 

plaintext dataset F, and u dummy keywords to be inserted in the indexing vector in 

order to strengthen security and maintain privacy. The index vector mandates any 

future modifications that can be made on the keyword dictionary. In MRSE, the index 

vector has three parts which are first n locations used to indicate presence or absence 

of real keywords, followed by u locations for dummy keywords, and terminated by 

the constant 1 at the last position as shown in Fig. 1. 

MRSE vector structure makes any modification on the keyword dictionary 

unworkable since positions of the keywords are fixed. However, in A-MRSE, we 

mirror the existing structure and derive a new vector structure having security 

locations (last constant dimension and dummy keywords locations) at the beginning, 

followed by n locations of real keywords as shown in Fig. 2. 

With this vector structure, A-MRSE supports any future modifications of the 

keyword dictionary size. For any file in the dataset, if it has real keyword Wj, then in 

the corresponding index vector p[1+u+j] = 1, otherwise 0. 

(2) KeyReduce: since A-MRSE supports keyword dynamics in the dictionary as 

compared to MRSE, the data owner calls this algorithm with number of keywords to 

be reduced as an input parameter to generate a new secret key SK k2 from the 

previously generated SK k1. Previously generated matrices M1 and M2 will then be 

resized into new matrices M'1 and M'2, each having (d-r)(d-r) dimension. That is 

accomplished by removing the last r-rows and r-columns, which finally yields a d-r 

square matrix. 

Modification of the splitting vector S demands special attention due the role played 

of each bit position in it. Basically, the dictionary size will change from n to (n-r) 

after removing r keywords. This algorithm inspects the new dictionary. If a keyword 

 

 

Fig. 1. MRSE index vector structure. 

 

Fig. 2. A-MRSE vector structure. 
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still exists in both dictionaries (the old and new sized), then that particular bit is 

copied into a new vector S' and omitted otherwise. The process continues for all n 

locations and finally gives a (d-r) S' bit vector. Algorithm 1 shows how KeyReduce 

works. 

 

Algorithm 1. KeyReduce(k1, r) 

 

Input: number of reduced keywords and original secret key. 

Output: new secret key SK k2. 

Method: the key reduce algorithm works as follows. 

1: Receive the integer input parameter r; 

2: Retrieve the original secret key SK k1 components; 

3: Resize matrices M1, M2 to M'1, M'2 by applying dimension reduction; 

4: Read the old dictionary as file f1 and new dictionary as file f2; 

5: for each line in file f1 and file f2 

6:     if (keyword in f1 exists in f2) 

7:         copy the value of bit position for this keyword from S into S'; 

8:     else 

9:          skip bit position; 

10:   end if 

11: end for 

12: Give SK k2 with 3-tuple as {S', M'1, M'2}; 

 

 

(3) KeyExtend: after adding more files on the cloud server, the data owner will 

definitely need to include new keywords in the dictionary. In this case, MSRE cannot 

work any longer as it suffers huge computation overhead as well as bandwidth 

inefficiency. This is where A-MRSE comes into account as it allows easy expansion 

of the secret keys relative to the increase of keywords in the dictionary. 

If z keywords are added, this algorithm generates two new z  z invertible matrices, 

Mz1, Mz2, and a new z bit vector Sz. These newly created matrices will be added to 

original matrices M1 and M2 and finally gives two modified matrices M'1 and M'2 

having (d+z)(d+z) dimension according to block diagonal matrix theorem [7]. 

On the other hand, splitting vectors Sz and S will be joined and make a new vector 

S' by copying all elements of vector S into S' then followed by appending elements of 

Sz. Algorithm 2 shows how KeyExtend works. 

 

Algorithm 2. KeyExtend(k1, z) 

 

Input: original secret key and number of newly added keywords. 

Output: new secret key SK k3. 

Method: the key extend algorithm works as follows. 

1: Receive the integer input z; 

2: Retrieve original key SK k1 components; 



3: Generates two invertible matrices Mz1, Mz2 and a bit vector Sz; 

4: Add Mz1 to M1, Mz2 to M2 by using diagonal block matrix operation and produces 

M'1 and M'2 having (d+z)(d+z) dimensions; 

5: for each bit position in vector S 

6: copy it into a new vector S'; 

7: end for 

8: for each bit position in vector Sz 

9: copy and append it into new vector S'; 

10: end for 

11: Give SK k3 with 3-tuple as {S', M'1, M'2}; 

 

(4) BuildIndex: this algorithm builds an encrypted searchable index for plaintext 

files in the original set F. Initially, the data owner applies similar procedures as in 

MRSE [1] before addition or reduction of keywords from the dictionary. 

For each file, a bit vector pi is set. Then starting with security positions, p[1] is set 

to 1, and values in dummy keyword positions between p[1] and p[2+u] are set to a 

random number ɛ. The remaining positions will be filled, indicating whether the file 

contains keywords from the dictionary. Therefore, p[2+u] to p[1+u+n] will be set to 1 

if the file contains a dictionary keyword and 0 otherwise. After setting all bit positions 

in vector pi, splitting procedures will then follow as in secure kNN computation [8] 

except that the index structure is reversed. This implies in A-MRSE, we start with 

security locations then followed by real keyword locations. The BuildIndex algorithm 

is shown in Algorithm 3. 

 

Algorithm 3. BuildIndex(F, SK) 

 

Input: the secret key SK, and the file set F. 

Output: the encrypted searchable index. 

Method: the build index algorithm works as follows. 

1: Receive the file set F; 

2: for each Fi∈ F 

3: Generate a bit vector pi; 

4. Set p[1] = 1, and p[2] – p[1+u] =  εi; 
5. for j = (u + 2) to (1 + u + n) 

6.  if Fidj ϵ W 

7.   Set p[j] = 1; 

8.  else set p[j] = 0; 

9.  end if 

10. for j = 1 to (1 + u + n) 

11.  if S[j] = 1 

12.   p1[j] + p2[j] := p[j]; 

13:  else p1[j] := p2[j] := p[j]; 

14: Run   1 = M1
Tp1,   2 = M2

Tp2, and set Ii = {  1,   2}; 

15: Upload encrypted files {Fi} ϵ C and I = {Ii} to the cloud server; 

 



(5) TrapdoorGen: Having a set of interested keywords, an authorized data 

consumer calls this algorithm to generate a secure trapdoor in order to search and 

retrieve a number of encrypted files from the cloud server. For a multi-keyword query 

q, a query vector is generated using the same strategy as in MRSE with v number of 

dummy locations set to 1 and all remaining locations set to 0. 

A score is used to determine the location of the file in the matching result set. In 

MRSE, this score was calculated by using Equation 1 for index file pi. 

  v

i i ip q= r x + ε +t                        (1) 

Xu et al [5] discovered the impact of values of the dummy keywords inserted in 

the final score, which causes “out-of-order” problem. This happens when a file with 

popular keywords obtaining lower score and finally will not be included in the 

returned list to the data consumer. 

To ameliorate the in-order ranking result while maintaining privacy-preserving 

property, all locations containing real keywords are multiplied by random number r, 

and all locations containing dummy keywords are multiplied by another random 

number r2 which is obtained by using Equation 2. Finally, the score is calculated by 

using Equation 3. 

 

     
0,Random r

r2=
v MAX u c , u+c 

                     (2) 

 v

i i i ip q= I T = r x +r2 ε +t                     (3) 

Finally, the trapdoor T will be generated as {M1
-1q', M2

-1q''}. 

(6) Query: After receiving T from the data consumer, the cloud server calls this 

algorithm to calculate the score for each file in the encrypted index I. The data 

consumer also includes parameter K so that the cloud server will return a list of only 

top-K files after a ranked search over the encrypted index. The trapdoor generated 

from a similar set of keywords will be different each time. This prevents the cloud 

server from performing statistical attacks; however the cloud server can still 

determine the trapdoors came from the same keyword set since finally they all 

retrieve identical top-K files though with different scores. 

To resolve this issue, in A-MRSE we designed a new way to obfuscate the cloud 

server from performing statistical attacks. We modify the total number of retrieved 

files by adding K' files randomly such that K' < K. The value of K' is obtained by 

using Equation 4. 

K' = ε K                              (4) 

The value of ɛ is used as a security parameter, and it grows from 0% depending on 

the number of files to be retrieved from the cloud server. If it set to 0%, the 

implication is that the data owner prefers efficiency over security. For instance, when 

K is less than 10, the value of ɛ can be set to 25%, when K lies between 10-20 it can 

be set to 20%, and when K reaches 50% it can be 15%. By doing so, the cloud server 

cannot determine whether two queries originated from the same keyword set. 



3   Performance Evaluation 

In this section we present the results obtained after performing multiple experiments 

with different settings. We selected a real life dataset, Enron Email Dataset [9], 

various numbers of emails were randomly selected from the dataset for each test. The 

workbench was a Dell Latitude E-5520 machine with an Intel CoreTM i7 CPU @ 

2.20GHz  8 with 8GB of RAM. The operating system is Linux Mint 15 (Olivia x64), 

simulation codes were implemented by using Java programming language and 

elements in invertible matrices were double, generated randomly by using a Jama-

1.0.3.jar package [10]. For each test taken, we observed results for both A-MRSE and 

MRSE scheme and then we compared their performances. 

(1) Key Generation and Editing: the total time in key generation includes the time 

to generate bit vector S, as well as the two invertible matrices which then followed by 

adding the time to transport and compute the inverse of these matrices. Fig. 3 shows 

how A-MRSE outperforms MRSE during key generation starting from 1000 

keywords dictionary size and keeps growing up to 8000. In this phase, the previously 

generated 1000 key size was used to create new expanding keys. For instance, for a 

5000 key, A-MRSE uses 32.94% of total time, and for a 6000 A-MRSE uses 37.85% 

of total time as compared with MRSE. 

A remarkable gain is observed when the dictionary size is reduced. It took much 

less time to edit the key with A-MRSE than to regenerate with MRSE. As shown in 

Fig. 4, A-MRSE remains almost flat during key regeneration while MRSE raises as 

the keywords grow in the dictionary. For example, it took 0.33% of the total time for 

A-MRSE to generate a 5000 key from an existing 6000 in case 1000 keywords are 

dropped from the dictionary where by MRSE took 298 times more than A-MRSE. 

(2) Index Building: the time taken to build a searchable index I for all documents is 

the sum of the individual time taken to build indexes I for each document. This 

includes mapping of keywords extracted from file Fi to a data vector pi, followed by 

encrypting all the data vectors and finally builds a searchable index that will be 

uploaded to the cloud server. The cost of mapping or encrypting primarily depends on 

the dimension of the data vector which is tied up to the dictionary size. Also, the cost 

of building the whole searchable index I depends on the number of sub indexes which 

implies the total number of documents in the dataset. 

 

  

Fig. 3. Key reduction and generation. Fig. 4. Index building. 

 



  

Fig. 5. Index building. Fig. 6. Trapdoor generation. 

Fig. 5 shows a comparison of the time taken to build the searchable index for both 

MRSE and A-MRSE with different numbers of keywords in the dictionary where the 

documents in the dataset were fixed to 3000. A-MRSE outperforms MRSE, for 

instance building index with a 6000 key size, it took 44% of the total time as 

compared with MRSE. Fig. 6 shows comparison of the total time taken to build the 

searchable index between A-MRSE and MRSE for different numbers of files in the 

dataset ranging from 1K to 8K inclusive with the key size fixed to 2K. Again, A-MRS 

saw off MRSE in terms of efficiency, for example it took 37.14% of total time to 

build index for a 4000-files dataset. 

As we can see, in all settings whether the key is fixed with increasing documents 

in the dataset or the other way round, A-MRSE still outperforms MRSE. This is 

because the keys in A-MRSE contain many zero-valued elements as a result of key 

expansion. This makes multiplications during index building to be much faster in A-

MRSE than in MRSE. 

(3) Trapdoor Generation: trapdoor generation involves two multiplications of a 

matrix and a splitting query vector. Fig. 8 shows the trapdoor generation cost for both 

A-MRSE and MRSE. Again, as seen from the graph, A-MRSE saw off MRSE as it 

takes less time to complete the whole process. For example, with 5000 keywords 

dictionary size, A-MRSE took 45.31% of the total time as compared with MRSE 

scheme. As more keywords are added, more performance gain can be achieved with 

our A-MRSE. We are certain that this gain is highly contributed with many zero-

values elements in A-MRSE matrices compared with the ones in MRSE. 

(4) Query: the cloud server is responsible for performing query execution by using 

querying algorithm with which it computes and ranks the similarity scores for all 

documents in the dataset. We conducted several experiments for both A-MRSE and 

MRSE with fixed number of documents in the dataset while varying the dictionary 

size. The performances were almost comparable between A-MRSE and MRSE. The 

key point of our scheme is that, it enables data owners to make use of existing keys 

and generate new searching and indexing keys without the need of running key 

generation again from scratch. This is for both scenarios of increasing and decreasing 

number of keywords in the dictionary. 



4   Related Works 

Cloud computing is delivered as a product from both software and hardware 

evolutions as well as the Internet. It offers actual realization of the long waited utility 

computing service. However, with all its benefits, it still comes with a number of 

security challenges posed to both individual data owners as well as organizations 

which use cloud technology [11]. Enabling keyword search over encrypted data in 

cloud computing environment became an open question. 

Song et al [2] was among the earliest researchers to present a practical solution of 

keyword search over encrypted data. They offered a solution in which each word in 

the plaintext is encrypted with a two-layer encryption scheme that uses stream ciphers. 

Boneh et al [12] introduced a public keyword encryption scheme with keyword search. 

Similar works were also presented in [13] and [14] that put forward searchable 

encryption schemes. However, solutions based on public key encryption are usually 

very computation expensive. Furthermore, keyword privacy is not protected in public 

key setting since the server could encrypt any keyword with the known public key 

and then use the received trapdoor to evaluate its ciphertext. 

Wang et al [4] presented the earlier work that explores user's capability of ranked 

search over encrypted cloud data. Ranked search improves systems efficiency and 

usability by returning all matching files in a ranked order depending on predefined 

user rules, and for this case is its file length and document frequency. Other solutions 

are presented in [3] and [15], but all these works presented solutions based on single 

keyword search only. Singe keyword ranked search is computational inefficiency 

when the number of documents is quite large as the final result can include almost all 

documents in the set C as long as they contain a single searched keyword. Multi-

keyword ranked searches came to puzzle out this issue, as initially presented by Cao 

et al [1]. The scheme is semantically secure. However, it lacks actual implementation. 

None of the above schemes addressed the challenges of varying keyword dictionary 

size following addition or reduction of files on cloud server. A-MRSE presents a 

novel scheme with new algorithms that address this issue and can support any 

dynamic in keyword dictionary size with minimum communication and computation 

overhead. A-MRSE achieves its desired goals and leaving no drawback as in [1]. 

5   Conclusion and Future Works 

In this paper, we present a novel scheme that is adaptive and it supports multi-

keyword ranked search over encrypted cloud data. We present a novel scheme, called 

A-MRSE, which uses new algorithms to solve the existing challenges on multi-

keyword keyword searches over encrypted data. We also strengthen security and 

privacy by preventing the cloud server from performing statistical attacks based on 

the results to be returned to data consumers after performing a ranked search. A-

MRSE can be easily deployed in many cloud scenarios, such as UniDrive, a 

synergizing multiple consumer cloud storage service [16]. We conducted multiple 

experiments under different settings and the results illustrates that our new A-MRSE 

scheme is much better than MRSE. 



In the future, we are looking forward to building schemes that can work under 

stronger security threats especially when the cloud server is capable of colluding. We 

are working on building adaptive schemes that can work for fuzzy keyword searches. 
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