
An Efficient Data Selection Policy for Search Engine Cache Management

Xinhua Dong, Ruixuan Li, Heng He, Xiwu Gu
School of Computer Science and Technology

Huazhong University of Science and Technology
Wuhan, P.R.China

Email: {xhdong, rxli, henghe, guxiwu}@hust.edu.cn

Mudar Sarem
School of Software Engineering

Huazhong University of Science and Technology
Wuhan, P.R.China

Email: mudar66@hotmail.com

Meikang Qiu
Department of Computer Science

Pace University
New York, USA

Email: mqiu@pace.edu

Keqin Li
Department of Computer Science

State University of New York
New York, USA

Email: lik@newpaltz.edu

Abstract—Caching is an effective optimization in search engine.
The data selection policy plays a key role in caching, which
places the data to be cached in memory. However, the current
data selection policies are not suitable to the hybrid storage
architecture with solid state disks (SSDs), which have gradually
replaced hard disk drives (HDDs) in search engines. In this
paper, we present an Efficient Data Selection policy (EDS) for
search engine cache management, which views cache media as
a knapsack, and views results and posting lists as items. The
best benefit can be computed by greedy algorithms. In order to
verify the effectiveness, we carry out a series of experiments to
study essential factors of data selection in different architectures,
including HDD, SSD, and SSD-based hybrid storage architecture,
which uses SSD as a secondary cache for memory. The exper-
imental results demonstrate that the proposed policy improves
the hit ratio by 20.04% and the retrieval performance on HDD,
SSD, and hybrid architecture by 31.98%, 28.72% and 23.24%,
respectively.

Index Terms—search engine; cache management; data selec-
tion; solid state disk; hybrid storage architecture

I. INTRODUCTION

In a modern search engine, caching is the preferred tech-
nique for attaining performance. Over the past years, many
caching techniques have been developed and used in search
engines. In order to reduce the query response time, the search
engines commonly dedicated portions of the servers memory
to cache certain query results [1], posting list [2][3][4], in-
tersection [5], document [6], score, and snippet [7]. Caching
means copying frequently or recently accessed parts of the
data from high-capacity but slow storage devices (HDD) to
low-capacity but fast storage devices (Memory or SDD). The
data selection means selecting the effective data to be placed
in memory or SSD. These caches avoid excessive disk access
and repeated computation.

Due to the wide speed gap between the random read and
the sequential read in HDD, the benefit of the cache hit
has been largely attributed to the saving of the expensive
random read operations. Therefore, the early studies focused
on the improvement of the hit ratio in the HDD search engine
architecture, and put forward some classic policies [3][4],

such as Freq, FreqSize etc. The emerging SSD has ultra-high
performance for random data access. Random reads in SSD are
one to two orders of magnitude faster than in HDD [8]. In an
SSD-based search engine infrastructure, now the benefit of the
cache hit should attribute to both the saving of the random read
and the saving of the subsequent reads. Since SSD is replacing
HDD, the cache hit ratio is no longer a reliable reflection of
the actual query latency because a larger data items being
found in the cache yields a higher query latency improvement
over a smaller data item [8]. The frequency was found to be a
core factor in the SSD experiments. In an SSD-based hybrid
search engine infrastructure, our previous proposed CBSLRU
[9] algorithm gained higher hit ratios than the traditional LRU.

However, without being guided by a particular theory, these
proposed factors may be not comprehensive, and some combi-
nations of the factors that influence the retrieval performance
have not been found. The proposed policies mainly consider
the frequency and the size, but many other factors have not
been considered. Therefore, the applications may not work
well in different hardware environments. We assume that the
historical query log has a guiding role for the future query
[1]. Therefore, a set of query features could be found through
query log. When the user submits a query, the data selection
policy is tuned to use these features. In order to analyze the
query log and improve the efficiency of the data selection,
we have introduced the knapsack problem, which views cache
media as knapsack and views result and posting list as items,
and used a greedy algorithm to calculate the retrieval time.
Also, we propose an effective data selection policy (EDS),
which involves the frequency, the size, the disk parameters,
and the other factors. The EDS can be better applied to the
different storage architectures.

We have made three main contributions in our work. First,
we describe and analyze the knapsack problem in different
storage architectures. Second, through derivation and compar-
ison, we find some critical factors that affect the performance
of the search engines. Third, we propose data selection policy
(EDS) that places the efficient data to be cached either in

memory or SSD.
The rest of the paper is organized as follows. In Section

II, we discuss the related work. Section III presents different
storage architectures for search engines. In Section IV, we
analyze the knapsack problem and perform the derivation of
the EDS in hybrid storage architectures. Section V shows the
results of the performance evaluation. Finally, in Section VI,
we conclude this study and discuss the future work.

II. RELATED WORK

In general, search engine caches can be classified into
two categories: static caches [2] and dynamic caches [10].
The static caches try to capture the access locality of the
data items. Past data access logs are utilized to determine
the data that should be cached. Typically, the items that are
more frequently accessed in the past are preferred over the
infrequently accessed items for caching. Static caches need
to be periodically updated, depending on the variation of
the access frequencies of the items. On the other hand, the
dynamic caches try to capture the recency of the data access.
The data that is more likely to be accessed in the near future
remains in the cache. The challenge in the previous research in
dynamic caching was to develop cache eviction policies [11].
Recently, the current challenge is to devise effective policies
to retain cache.

The caching techniques in search engines can be classified
into two-level caching and multi-level caching. Saraiva et al.
[12] evaluated a two-level caching architecture using result
and list caching on the search engine TodoBR. Result caching
filtered out the repetition in the query stream by caching the
complete results of the previous queries for a limited time
window [10][11]. Long et al. [13] proposed and evaluated a
three-level caching scheme that added an intermediate level of
caching. On this basis, Wang et al. [8] also carried out a series
of experiments on document and snippet in the proposed web
search engine architecture. Ozcan et al. [5] proposed five-level
static cache architecture for web search engines.

Considering the special I/O performance of the SSD, the
researches on such SSD-based hybrid storage architecture have
been attracting both academic and industrial fields. With its
excellent random read performance, the SSD can work well
as a read cache in front of a larger HDD [14]. Suk et al. [15]
proposed a hybrid file system, called hybridFS, whose primary
objective is to put together attractive features of both the HDD
and the SSD devices, to construct a large-scale, virtualized
address space with a minimum cost.

III. STORAGE ARCHITECTURES OF SEARCH ENGINES

In this section, we briefly present the storage architecture
of a search engine, including one-level and two-level archi-
tectures. Then, we give the data management process of the
two-level search engine architecture.

A. One-level architecture

The normal search engine employs one-level architecture.
Memory cache is used to store all of the intermediate results

HDD (Inverted File)

SSD (Result/Inverted List)

Write Buffer

Memory

Read

Data Selection

Read

Data Placement / Data Replacement

Data Eviction

EDS > Threshold

Flush

Write

Fig. 1. The data management process of two-level search engine architecture

includes result cache, posting list cache, snippet cache, and
document cache. The global inverted indexes are stored on
the HDD or SSD. That is to say, there are two situations in
one-level architecture, one can be called “Memory + HDD”
and the other is called “Memory + SSD”.

B. Two-level architecture

The cache storage structure can be divided into two levels:
level 1 cache (L1 cache) and level 2 cache (L2 cache). L1
cache refers to the memory, and its capacity is usually several
GB to dozens of GB. L2 cache refers to the SSD, and its
capacity is usually dozens of GB to hundreds of GB. In this
paper, we adopt the hybrid scheme, which the data in memory
may or may not be cached on SSD, depending on a criteria
either set by the user or decided based on the current workload.
Figure 1 shows the data management process of the two-level
search engine architecture. According to the data flow, the
main steps are as follows.

First, when the user submits a query, Lucene will read
the data from the HDD (i. e., the inverted lists), and put
it in memory. Second, once the memory buffer overflows,
the Lucene will eliminate some of the data according to the
cache replacement strategy. The data will be eliminated by
the filter of a data selection module. By screening (EDS >
Threshold), the data will be added to the write buffer (called
Write Buffer). Third, when the Write Buffer overflows, the
Lucene will brush the data of the Writer Buffer into the SSD
according to either the data placement strategy or the data
replacement strategy. Fourth, when the data in the SSD being
hit, the Lucene will read the corresponding data from the SSD
to the memory.

IV. EFFECTIVE DATA SELECTION IN STORAGE
ARCHITECTURES

In this section, we first describe knapsack problem in the
SSD-based hybrid storage architecture, and then we define a
variety of time cost in the query process. Finally, we give
detailed derivation steps of an effective data selection (EDS)
in different storage architectures.

TABLE I
RETRIEVAL UNDER DIFFERENT SITUATIONS IN HYBRID ARCHITECTURE

Situation Memory SSD HDD Probability Time Cost

S1 R P1 T1 = Cmpr

S2 R P2 T2 = Cspr

S3 I P3 T3 = Cmpl + C0

S4 I P4 T4 = Cspl + C0

S5 I P5 T5 = Chpl + C0

A. Knapsack problem in hybrid architecture

During the retrieval process based on our proposed hybrid
storage architecture, there are five kinds of basic situations of
data access, which are shown in Table I.

In order to decrease the amount of memory space used in
hybrid architecture, only a part of the results are permitted
to be stored on SSD. From Table I, We note that Memory
and HDD denotes where the data read from, R denotes the
results, and I denotes the inverted lists. Probability repre-
sents the probability that the corresponding situation takes
place. Time is the average retrieval time accordingly. In the
calculation formula of the time cost, Cmpr represents the
time cost of obtaining search results directly from Memory,
and Cspr represents the time cost of obtaining the search
results directly from SSD. Cmpl represents the time cost of
obtaining inverted lists from Memory, and Chpl represents
the time cost of obtaining inverted lists from HDD. So,
C0 = Crank+Cdoc+Csnip, This previous formula represents
the sum of the time cost of obtaining the search results by
sorting, obtaining documents, and generating snippet. It is easy
to know that T5 ≥ Tk(1 ≤ k ≤ 4). From Table I, we give the
average retrieval time as shown in the following Formula 1.

AV G(T) =
5∑

i=1

Ti × Pi (1)

In order to minimize the average retrieval time, we need
to make full use of the advantages of the hybrid cache by
analyzing the different situations in Table I, which means
that the probability of “S1”, “S2”, “S3”, and “S4” should
be increased. Therefore, we analyze the time cost and the
frequency of the single item, which include result and inverted
list. Suppose that there are n results and m inverted lists.
Each item will be accessed with a certain frequency (f). By
considering that an item may either be cached in Memory or
SSD, or be obtained from HDD indirectly, Formula 2 can then
represent the mathematical expectations of the retrieval.
E(T) =
n∑

i=1

(T1 · xiMM + T2 · xiSSD + T5 · (1 − xiMM − xiSSD)) · fi

+
m∑

j=1

(T3 · xjMM + T4 · xjSSD + T5 · (1 − xjMM − xjSSD)) · fj

=
n∑

i=1

T5 · fi −
n∑

i=1

[(T5 − T1) · fi · xiMM + (T5 − T2) · fi · xiSSD]

+

m∑
j=1

T5 · fj −
m∑

j=1

[(T5 − T3) · fj · xjMM + (T5 − T4) · fj · xjSSD]

(2)

xi(store) = 1 represents that item i is cached in the storage
medium store, otherwise, xi(store) = 0. For example, xiMM

= 1 represents that item i is cached in main memory. For the

purpose of minimizing the average retrieval time, we want
the mathematical expectations of the access time as small as
possible, and then we get the following Formula 3.

minAV G(T) ⇔ minE(T) ⇔

max
n∑

i=1

[(T5 − T1) · fi · xiMM + (T5 − T2) · fi · xiSSD]

+

m∑
j=1

[(T5 − T3) · fj · xjMM + (T5 − T4) · fj · xjSSD]

(3)

In the objective function, we can take (T5 − Tk)fi as the
value of the item, while it means the time savings by the cache.
Therefore, it can be converted into a multi-knapsack problem.
By considering the different cache spaces of the Memory and
the SSD, we build a mathematical model of a multi-knapsack
problem for our analysis. The items which will be loaded into
the knapsacks including n search results and m inverted lists.
Each item has its own size (Wi), access frequency (fi), and
retrieval time (as shown in Table I). Also, the items need to
meet the limitations of the memory capacity CMM and the
SSD capacity CSSD. There is no intersection between the set
of items cached in memory and SSD. According to above goals
and these condition constraints, the multi-knapsack problem
can be described as a mathematical model presented in the
following Formula 4.

max

n∑
i=1

[(T5 − T1) · fi · xiMM + (T5 − T2) · fi · xiSSD]

+

m∑
j=1

[(T5 − T3) · fj · xjMM + (T5 − T4) · fj · xjSSD]

s.t.

n∑
i=1

Wi · xiMM +

m∑
j=1

Wj · xjMM ≤ CMM

n∑
i=1

Wi · xiSSD +

m∑
j=1

Wj · xjSSD ≤ CSSD

xiMM + xiSSD = 0 or 1 (1 ≤ i ≤ n)

xjMM + xjSSD = 0 or 1 (1 ≤ j ≤ m)

xiMM = 0 or 1, xiSSD = 0 or 1 (1 ≤ i ≤ n)

xjMM = 0 or 1, xjSSD = 0 or 1 (1 ≤ j ≤ m)

(4)

As it is known, for the unbounded knapsack problem,
the greedy algorithm can achieve the optimal solution. In
this model, the size of a single item is far less than the
cache capacity of Memory and SSD. Therefore, for saving
the computing cost, we use the greedy algorithm to solve the
knapsack problem. Similarly, we sort the items in ascending
order according to the value per unit (UV), which is shown in
the following Formula 5.

UV =
(T5 − Tk)fi

Wi
(1 ≤ k ≤ 4) (5)

B. Definitions of saving time terms

In order to explore the change rule, the time cost associated
with each query step is computed using the formulas shown in
Table II. As it can be seen from this table, Dseek and Drotation

represent the seek latency and the rotational delay of the HDD
respectively. Dread represents the time cost of obtaining one

TABLE II
COST COMPUTATIONS IN THE CACHE OF SEARCH ENGINE

Notation Computation

Chpl Dseek +Drotation +Dread× | Ij | ×Sp ÷Dblock

Cspl Sread× | Ij | ×Sp ÷ Sblock

Crank CPUscoring ×
∑

ti∈q(| Ij | ×Sp)

Cdoc Dseek +Drotation +Dread× | dtop | ÷Dblock

CSdoc Sread× | dtop | ÷Sblock

Csnip CPUsnippet× | d |
Cspr Sread× | Rtop | ×Sr ÷ Sblock

Cmpl Mread× | Ij | ×Sp ÷Dblock

Cmpr Mread× | Rtop | ×Sr ÷ Sblock

TABLE III
THE TIME SAVING WITH EACH TYPE OF KNAPSACK

Notation Type Time saving

Saving1 T5 − T1 Chpl + C0 − Cmpr ≈ Chpl + C0

Saving2 T5 − T2 Chpl + C0 − Cspr ≈ Chpl + C0

Saving3 T5 − T3 Chpl − Cmpl ≈ Chpl

Saving4 T5 − T4 Chpl − Cspl ≈ Chpl

block of data from the HDD, as Sread and Mread do from
the SSD and the Memory respectively. Dblock is the block
size of the HDD, and Sblock is the block size of the SSD.
Ii represents the number of DocId of the ith posting list,
and Sp is the size of the storage of per DocId. CPUscoring

and CPUsnippet represent the scoring cost and the snippet
generation cost respectively. dtop represents the size of the
highest scoring document, and d is the number of documents.
Rtop represents the highest scoring result. Finally, Sr is the
average size of per result.

C. Derivation of EDS in storage architectures

Compared with the inverted list entries, the result entries
are quite small and similar in size, so we can take common
policy to deal with the results. At the same time, we need
some special selection policies for the inverted list.

Based on Formula 5,we can find that the following three
factors are associated with the value of UV: saving time (T5−
Tk), access frequency (fi) and item size (Wi). We set EDS as
the effective values per unit, and put the larger ones into the
knapsack as presented in the following Formula 6:

EDS =
Saving × fi

Wi
(6)

Based on different storage architecture, the EDS can be
analyzed from three aspects. First, according to the time-
consuming listed in Table I, we find that there are greater
differences in time saving between the items cached in mem-
ory and those cached in SSD. Therefore, we can divide the
multi-knapsack problem into two stages, the memory knapsack
problem and the SSD knapsack problem. Considering the
differences in the time saving, and the size between the results
and the inverted lists, we separate these two types of items, and
get two knapsack problems. In this way, the multi-knapsack
problem is transformed into four basic 0-1 knapsack problems.
The time saving with each query step is deduced using the
formulas shown in the following Table III.

By calculating the parameters of the hardware and analyzing
the query log, we find that the time consumption of Cmpr,
Cmpl, Cspr and Cspl can be negligible relative to the time
of reading the same result and inverted list from the HDD.
Through observation, we find that Chpl is the key factor to
the saving time of reading the inverted lists, and Chpl + C0

is the key factor to the saving time of reading the result. By
substituting Chpl and (Chpl + C0) into Formula 6, we can
obtain Formula 7 and 8.
EDSPL =

Freq × Chpl

Wj

= C1
Freq

Wj

+ C2Freq (C1 = Dseek + Drotation, C2 =
Dread

Dblock

)

(7)

EDSR =
Freq

Wi

× (Chpl + C0) ≈
Freq

Wi

× (Chpl + Cdoc)

= (2C1 + C3) ×
Freq

Wi

+ C2 ×
Wj

Wi

× Freq (C3 = d × K × C2)

(8)

Second, in similar way, we complete the same steps pre-
sented in Sec. IV, part A. In contrast, the object is converted
from hybrid storage to SSD. Also, we can use the model
of 0-1 knapsack problem and the value per unit (presented
in Formula 5). We can obtain the following two formulas 9
and 10, respectively. Where, EDSSPL represents EDS of the
inverted lists and EDSSR represents EDS of the results in
SSD.

EDSSPL =
Freq × Cspl

Wj

=
Sread

Sblock
× Freq = C4Freq (C4 =

Sread

Sblock
)

(9)

EDSSR =
Freq

Wi

× (Cspl + C0) ≈
Freq

Wi

× (Cspl + CSdoc)

= C5 ×
Freq

Wi

+ C4 ×
Wj

Wi

× Freq (C5 = d × K × C4)

(10)

Third, when the object is converted from SSD to HDD, we
can also obtain the previous two Formula 7 and 8.

As seen in Formula 7, we can compute the value of C1

and C2 according to the parameters of certain types of hard
disk. (For example, Dseek = 8.5ms, Drotation= 4.2ms, Dread

= 4.88ms, Sp = 8bytes, Dblock = 512 bytes, then C1 = 12. 7,
C2 = 0. 0095). In Formula 8, we find that the time consumption
of Crank and Csnip can be negligible relative to the time of
Cdoc. Therefore, the value of C0 is Cdoc. K represents the
average size per document. When the size of the result is the
same (W is a constant), EDSR is a function of Freq. (For
example, d= 10, K=8kb, W=4kb, then C3 =780. 8, EDSR =
0. 22Freq).

V. PERFORMANCE EVALUATION

In this section, our evaluation includes two aspects, one is
to compare the hit ratios of several proposed algorithms, and
the other is to verify that our proposed policy can improve
the retrieval performance of the search engines, including the
HDD architecture, the SSD architecture, and the SSD-based
hybrid storage architecture. We preserve the notations of the
previous sections here.

TABLE IV
THE EXPERIMENT PLATFORM SPECIFICATIONS

Test-platform Environment

IR Tool Lucene 3.5.0

Data Set enwiki-20090805-pages-articles.xml

Query Log AOL-user-ct-collection

SSD Samsung SSD 840 Series 120GB

HDD Seagate ST2000DM001-1CH164 2TB

OS Windows 7/Ubuntu 12.04

CPU/RAM Inter(R) Xeon (R) CPU E3 1230 V2/16G

 10

 20

 30

 40

 50

 60

 70

 80

 90

160 320 480 640 800 960

H
i
t

R
a
t
i
o
(
%
)

Cache Size (MB)

(a) Static

S-PL-EDS
S-PL-Freq
S-PL-FreqSize

 10

 20

 30

 40

 50

 60

 70

 80

 90

160 320 480 640 800 960

H
i
t

R
a
t
i
o
(
%
)

Cache Size (MB)

(b) Dynamic

D-PL-DES
D-PL-Freq
D-PL-FreqSize

Fig. 2. The hit ratio comparison in HDD

A. Experimental settings

Table IV summarizes the experiment platform specification-
s. Five million documents indexed from enwiki data set have
been used in our experiment, and the used query log was from
AOL. In our experiments, we have prepared a set of sample
queries from the AOL query log, which were performed the
index retrieval. Our simulative search engine is based on
Lucene 3.5.0.

B. Hit Ratio

There are two existing static query inverted list caching
policies. We refer them as S-PL-Freq and S-PL-FreqSize,
respectively. In addition, we refer to the proposed static
caching policy as S-PL-EDS. Figure 2 shows the hit ratio
comparison with HDD.

In experiments, the number of total documents is 1,000,000,
and the cache size ranges from about 160MB to 960MB.
Figure 2(a) shows the hit ratio comparison between S-PL-
Freq, S-PL-FreqSize and S-PL-EDS in the static case. It can
be seen from Figure 2(a) that the hit ratio will increase with
the increase of the cache capacity at a certain range, and S-
PL-FreqSize, which tends to cache popular terms with short
posting lists, has a higher cache hit ratio than S-PL-Freq in
the previous stage. However, if we increase the cache capacity
continuously, the hit ratio of S-PL-Freq exceeds the hit ratio
of S-PL-FreqSize at a later stage. In the static case, S-PL-EDS
has the highest cache hit ratio among the three policies.

S-PL-Freq, S-PL-FreqSize and S-PL-EDS has discussed
above, for their dynamic cache versions, we refer them as
D-PL-Freq, D-PL-FreqSize and D-PL-EDS, respectively. The
dynamic cache versions are to capture the recency of the data
access. Figure 2(b) shows the hit ratio of D-PL-Freq, D-PL-
FreqSize, and D-PL-EDS in the dynamic case. As it can be
seen from this figure, D-PL-FreqSize always has a higher
hit ratio than D-PL-Freq. The hit ratio of D-PL-FreqSize is

 0

 50

 100

 150

 200

 250

 300

 350

 400

160 320 480 640 800 960A
v
e
r
a
g
e

q
u
e
r
y

l
a
t
e
n
c
y

(
m
s
)

Cache Size (MB)

(a) Static

S-PL-EDS
S-PL-Freq
S-PL-FreqSize

 0

 100

 200

 300

 400

 500

160 320 480 640 800 960A
v
e
r
a
g
e

q
u
e
r
y

l
a
t
e
n
c
y

(
m
s
)

Cache Size (MB)

(b) Dynamic

D-PL-EDS
D-PL-Freq
D-PL-FreqSize
D-PL-LRU

Fig. 3. Performance comparison in HDD

too higher than the hit ratio of D-PL-EDS in the previous
stage. However, at a later stage, the hit ratio of D-PL-EDS
exceeds the hit ratio of D-PL-FreqSize. The reason is that
the advantages of caching popular terms have been gradually
disappearing. We can compare the changes in the hit ratio of
the three policies between the dynamic and the static cases,
respectively. Our proposed D-PL-EDS policy improves the hit
ratio by 20.04% in average compared with the D-PL-Freq and
D-PL-FreqSize policies.

C. Retrieval performance on HDD

Figure 3 presents performance comparison in HDD. Figure
3(a) shows the average query time in the static case. The query
latency of the three selected caching policies is consistent with
the tradition holds: when one policy has a higher cache hit ratio
than the others, its query latency is also shorter than the others.
On the whole, the S-PL-EDS policy has the best query latency
compared with the S-PL-FreqSize and S-PL-Freq policies.
Specifically, we can note that S-PL-EDS’s average query time
is slightly worse than the average query time of S-PL-FreqSize
at 160MB cache memory because the latter has much higher
cache hit ratio. Figure 3(b) shows the average query time in
the dynamic case. Compared with the static case, the average
query latency of the dynamic case has the same trends. In
comparison with LRU, the average response latency is reduced
by 31.98% in EDS.

D. Retrieval performance on SSD

Figure 4 shows the average query time on SSD in the
dynamic case, and the average query time have followed
the same trend in the static case. According to Formula 9,
EDSSPL only related to the frequency, so D-PL-EDS is the
same as D-PL-Freq. However, as it can be seen in figure
4, D-PL-FreqSize becomes poor in terms of query latency.
The reason is that the benefit brought by the higher hit ratio
of D-PL-FreqSize is watered down by the fewer sequential
read savings caused by short posting lists. In comparison with
FreqSize, the average response latency is reduced by 28.72%
in EDS.

E. Retrieval performance on hybrid architecture

In two-level architecture, the data selection method is rel-
atively complicated. In the dynamic case, the data selection
strategy can be implemented when the data flow from the
memory to the SSD. If the data is selected, we can use three

0

20

40

60

80

100

120

320 800 1280 1760

a
v
e

ra
g

e
 q

u
e

ry
 l

a
te

n
cy

 (
m

s)

cache size (MB)

D-PL-EDS

D-PL-Freq

D-PL-FreqSize

Fig. 4. Performance comparison in SSD

a
v
e
ra
g
e
 q
u
e
ry
 l
a
te
n
cy
 (
m
s)

cache size (MB)

2L-PL-LRU-eds

2L-PL-LRU-f

2L-PL-LRU-fs

Fig. 5. Performance comparison in hybrid architecture

strategies EDS, Freq and FreqSize. We refer them as 2L-PL-
LRU-eds, 2L-PL-LRU-f and 2L-PL-LRU-fs, respectively. As
shown in figure 5. By considering that the selected data will
be written to the SSD, our proposed EDS method only adopt
frequency factor here. Figure 5 shows that the average query
time of 2L-PL-LRU-eds (i.e., 2L-PL-LRU-f) is significantly
better than that of 2L-PL-LRU-fs. The reason is that the cache
terms with high frequency save query time.In this experiment,
the average response latency is reduced by 23.24% in EDS
compared to FreqSize.

The experimental results have shown that our proposed EDS
policy is better than the Freq and the FreqSize policies in
the performance for different architectures. We believe that
there are two main reasons for this achievement. First, the
EDS policy has the highest cache hit ratio. Second, the EDS
policy can be viewed as a reasonable compromise between
the FreqSize policy and the Freq policy. The value of EDS
depends on the parameters of the specific storage medium.
Through the guidance of the query log and the EDS policy,
the ideal data are always placed in the cache.

VI. CONCLUSION AND FUTURE WORK

In this paper, we describe three types of storage architecture
for search engines, and then we define and analyze knapsack
problem in storage architectures. Through derivation and com-
parison, we find some critical factors, which affect the perfor-
mance of search engines. Then, we propose a data selection
policy (EDS), which places the efficient data to be cached in
memory or SSD. The experimental results demonstrate our
proposed EDS policy. In the future, we will consider the data
selection policies of intersection cache and document cache. In

addition, we need to reduce the cost of search engine servers
without influencing the retrieval performance.

ACKNOWLEDGMENTS

This work is supported by National Natural Science Foun-
dation of China under grants 61173170, 61300222, 61433006
and U1401258, Innovation Fund of Huazhong University
of Science and Technology under grants 2015TS069 and
2013QN120, and Science and Technology Support Program
of Hubei Province under grant 2014BCH270. Meikang Qiu is
supported by NSF 1457506.

REFERENCES

[1] R. Ozcan, I. S. Altingovde, and U. Ulusoy, “Static query result caching
revisited,” Proc. of the 17th International Conference on World Wide Web
(WWW’08), Beijing, China, pp.1169-1170, 2008

[2] R. A. Baeza-Yates and F. Saint-Jean, “A three level search engine
index based in query log distribution,” Proc. of the 10th International
Symposium on String Processing and Information Retrieval (SPIRE’03),
Manaus, Brazil, pp.56-65, 2003

[3] R.A. Baeza-Yates, A. Gionis, F. Junqueira, V. Murdock, V. Plachouras
and F. Silvestri, “The impact of caching on search engines,” Proc. of the
30th International conference on research and development in Information
Retrieval (SIGIR’07), Amsterdam, Netherlands, pp.183-190, 2007

[4] R.A. Baeza-Yates, A. Gionis, F. Junqueira, V. Murdock, V. Plachouras and
F. Silvestri, “Design trade-offs for search engine caching,” ACM Trans.
Web, vol.2(4), pp.1-28, 2008

[5] R. Ozcan, I. S. Altingovde, B. B. Cambazoglu, F. P. Junqueira and U.
Ulusoy, “A five-level static cache architecture for web search engines,”
Inf. Process. Manage. vol.48(5), pp.828-840, 2011

[6] A. Turpin, Y. Tsegay, D. Hawking and H. E. Williams, “Fast generation
of result snippets in web search,” Proc. of the 30th International confer-
ence on research and development in Information Retrieval (SIGIR’07),
Amsterdam, Netherlands, pp.127-134, 2007

[7] D. Ceccarelli, C. Lucchese, S. Orlando, R. Perego and F. Silvestri,
“Caching query-biased snippets for efficient retrieval,” Proc. of the 14th
International Conference on Extending Database Technology (EDBT’11),
Uppsala, Sweden, pp.93-104, 2011

[8] J.G. Wang, E. Lo, M. L. Yiu, J.C. Tong, G. Wang and X.G. Liu, “The
impact of solid state drive on search engine cache management,” Proc.
of the 36th International conference on research and development in
Information Retrieval (SIGIR’13), Dublin, Ireland , pp.693-702, 2013

[9] R. X. Li, C. Z. Li, W. J. Xiao, H. Jin, H. He, X.W. Gu, K. M. Wen, Z. Y.
Xu, “An Efficient SSD-based Hybrid Storage Architecture for Large-Scale
Search Engines,” Proc. of the 41st International Conference on Parallel
Processing (ICPP’12), Pittsburgh, PA, USA, pp.450-459, 2012

[10] T. Fagni, R. Perego, F. Silvestri, S. Orlando, “Boosting the performance
of Web search engines: Caching and prefetching query results by exploit-
ing historical usage data.” Trans. Inf. Syst. vol.24(1), pp.51-78, 2006

[11] Q. Gan and T. Suel, “Improved techniques for result caching in web
search engines,” Proc. of the 18th International Conference on World
Wide Web (WWW’09), Madrid, Spain, pp.431-440, 2009

[12] P.C. Saraiva, E.S. de Moura, R.C. Fonseca, Jr. W. Meira, B.A. Ribeiro-
Neto and N. Ziviani, “Rank-Preserving Two-Level Caching for Scalable
Search Engines,” Proc. of the 24th International conference on research
and development in Information Retrieval (SIGIR’01), New Orleans,
Louisiana, USA, pp.51-58, 2001

[13] X. Long and T. Suel, “Three-Level Caching for Efficient Query Pro-
cessing in Large Web Search Engines,” Proc. of the 14th international
conference on World Wide Web (WWW’05), Chiba, Japan, pp.369-395,
2005

[14] J. Matthews, S.N. Trika, D. Hensgen, R. Coulson, K. Grimsrud, “Intel
Turbo Memory: Nonvolatile disk caches in the storage hierarchy of
mainstream computer systems,” TOS. vol.4(2), pp.1-24, 2008

[15] J. Suk, J. No and Y.K. Kim, “Design and implementation of hybridFS,”
Proc. of the 3rd International Conference on Computer Science and
Information Technology (CSAIT’10), Amsterdam, Netherlands, pp.501-
505, 2010

