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Abstract—Caching is an effective optimization in large scale 

web search engines, which is to reduce the underlying I/O burden 

of storage systems as far as possible by leveraging cache localities. 

Result cache and posting list cache are popular used approaches. 

However, they cannot perform well with long queries. The 

policies used in intersection cache are inefficient with poor 

flexibility for different applications. In this paper, we analyze the 

characteristics of query term intersections in typical search 

engines, and present a novel three-level cache architecture, called 

TLMCA, which combines the intersection cache, result cache, 

and posting list cache in memory. In TLMCA, we introduce an 

intersection cache data selection policy based on the Top-N 

frequent itemset mining, and design an intersection cache data 

replacement policy based on incremental frequent itemset mining. 

The experimental results demonstrate that the proposed 

intersection cache selection and replacement policies used in 

TLMCA can improve the retrieval performance by up to 27% 

compared to the two-level cache. 

Keywords—search engine; cache; intersection cache; frequent 

itemset mining. 

I. INTRODUCTION 

With the explosive growth of data on the Internet, efficient 
data storage and retrieval strategies are becoming more and 
more important for search engines since they are one of the 
most important applications on the Internet. Hard disk is used 
as the major media to store the massive data for many large 
scale search engines. The low disk I/O access speed has 
become the major bottleneck for data retrieval operations. Data 
caching mechanism can effectively improve the retrieval 
performance. Different caching algorithms have recently been 
developed, such as result cache, intersection cache, projection 
cache, posting list cache, snippet cache, and document cache. 

Result cache and posting list cache are the most studied 
caches so far. However, result cache only performs very well 
on single-term and two-term queries while posting list cache 
needs extra calculations to return the final result. Intersection 
cache happens to play a complementary role for the previous 
two caches. However, in practice, the number of terms is 
considerable numerous, the combinations of multiple terms are 
tremendously huge. It becomes very difficult to choose which 

intersection should be kept in the cache. Thus, the existing 
intersection cache cannot achieve the satisfactory caching 
performance. It consumes a large amount of disk space to keep 
the information and only a very low hit rate can be reached. 
Furthermore, the low speed disk I/O accesses also reduce its 
effectiveness. In this paper, we design a novel 3-layer cache 
architecture called TLMCA to address this issue through 
keeping the most suitable intersection data in the memory to 
improve retrieval performance. Especially for longer queries, 
intersection cache could hit high-frequency term combinations, 
which makes up for result cache. Meanwhile, it saves inverted 
lists intersection computation, which makes up for posting list 
cache. In addition, we propose new intersection cache selection 
and replacement policies, which include intersection cache data 
selection policy based on Top-N frequent itemset mining 
(FIMI) and intersection cache data replacement policy based 
on incremental frequent itemset mining (IFIMI). To the best of 
our knowledge, our work is the first to integrate frequent 
itemset mining technology into the intersection cache. 

The contributions of this paper are as follows.  

 First, we analyze the characteristics of query term 
combinations that lay foundation for cache strategies. 

 Second, we propose TLMCA, a novel three-level cache 
architecture, and integrate frequent itemset mining 
algorithms with intersection cache to improve the 
efficiency and flexibility. 

 Third, we conduct extensive simulation experiments to 
evaluate TLMCA performance. The results show 
significant benefits of retrieval performance for 
TLMCA compared to other strategies. 

The rest of the paper is organized as follows. Section II 
discusses the related work. Section III analyzes the 
characteristics of dataset and query log in large scale search 
engines. Section IV describes the system design of TLMCA, 
the three-level cache architecture. Section V presents the 
intersection cache data selection and replacement policies 
based on frequent itemset mining. Section VI demonstrates the 
experimental results. Finally, Section VII concludes the paper 
and briefly discusses the future research directions. 



II. RELATED WORK 

A. Search Engine Cache 

The most common cache in search engine is the single level 
cache, which can be further categorized as result cache, score 
cache, intersection cache, projection cache, posting list cache, 
snippet cache, and document cache.  

1) Result cache (RC): RC preserves the most frequently 

queried results in the cache. Its management is simple. 

However, it is coarse-grained, and its hit rate decreases very 

fast as the data volume increases.  
Markatos [1] analyzed the EXCITE query log, and showed 

that static query result caching is a good choice only for small 
cache sizes, while dynamic caching is better for large cache 
sizes. Fagni [2] proposed an SDC policy that divides the cache 
into two parts and one part is reserved for static caching and 
the other one is used for dynamic caching. Ozcan et al. [3] 
introduced a model based on the stability of frequency and 
cost-aware result caching policies. Similarly, Gan et al. [4] 
proposed and evaluated a set of feature-based result cache 
eviction policies to achieve significant improvements. Wang et 
al. [5] analyzed several result cache policies of search engine. 
Recently, researchers are focusing on the update strategy in 
result cache to improve the performance [6, 7]. Namely, the 
retrieval system should always return the latest results to the 
user in dynamic environment. 

2) Posting list cache (PLC): The hit ratio in PLC is 

relatively higher than result cache because it uses a fine-

grained approach. However, it needs substantial calculation to 

return the final result, and its management is more complex.  
Zhang et al. [8] evaluated several state-of-the-art inverted 

list compression methods and different list caching policies. 
Baeza-Yates et al. [9,] proposed a new algorithm for static 
caching of posting lists that outperforms previous static 
caching algorithms as well as dynamic algorithms. Various 
posting list selection and replacement policies, such as LRU, 
LFU, a strategy based on frequency and the ratio of frequency 
to the size (FreqSize), have been developed. Currently, the 
research focuses on inverted index are index structure, clipping 
and compression algorithms. 

3) Intersection cache (IC): IC is the intersection of posting 

lists of several terms that appear together in one query. It can 

improve the retrieval performance and can be applied as a 

complementary method for the aforementioned two caches. A 

drawback is that the amount of terms’ combinations could be 

too large to keep in the memory. Thus, it has to consume a lot 

of disk space. Therefore, it is difficult to choose which 

intersection data should be stored in the cache.  
Long et al. [10] proposed a three-level cache system. They 

placed the projection cache on top, and use the hard disk as the 
basis of the two-level cache (RC and PLC). Ozcan et al. [11] 
proposed a five-level static cache architecture. Feuerstein et al. 
[ 12 ] proposed and evaluated static, dynamic cost-aware 
policies and hybrid policies for IC with inverted index residing 
on disk and in main memory. Later, they proposed and 
evaluated a static cache that works simultaneously as list and 
intersection cache [13]. Wang et al. [14] found that posting list 

intersection is the bottleneck in SSD-based search engines and 
exploited full-term-ranking-cache (FTRC) and two-term-
intersection-cache (TTIC) to mitigate list intersection overhead. 

There are also some researches on snippet caching [15] and 
document caching [ 16 ]. Some studies aimed to integrate 
multiple types of caches [10, 11]. In this paper, we focus on the 
intersection cache, and will discuss it in the next section. 

B. Frequent itemset mining 

The most popular frequent itemset mining (FIMI) 
algorithms are Apriori and FP-Growth. The Apriori algorithm 
was proposed by Agrawal [17] in 1994. However, it has to 
scan the data set repeatedly and produces a large number of 
candidate itemsets. Han et al. [18] proposed FP-Growth which 
does not generate candidate frequent itemsets. It only needs to 
scan the database twice and avoids the generation of a large 
number of candidate itemsets. Various algorithms such as 
maximal FIMI, closed FIMI, Top-N FIMI, incremental FIMI 
were developed based on Apriori and FP-Growth. 

Top-N FIMI algorithm [19,20] needs to set the number of 
frequent itemsets N rather than the minimum support. It 
produces a backtracking problem so that the space and time 
complexity becomes very high. Traditional FIMI algorithms 
are based on the static data sets. However, data sets in reality 
mostly are dynamic, which has addition, deletion and 
modification, and they lead to some existing frequent itemsets 
become invalid and some other previous non-frequent itemsets 
turn to be frequent. Completely mining again towards the new 
data will bring too much overhead. Thus, incremental FIMI 
algorithms arise. They always divide the dynamic data set into 
landmark window, attenuation window and sliding window for 
processing. The data structures, such as bit table, binary vector, 
matrix and the prefix tree,  are often used.  

In summary, the result cache and posting list cache cannot 
perform well for multi-term queries. The previous intersection 
cache selection policies are not very efficient, and they only 
consider term pairs. Our objective is to explore a simple and 
efficient intersection cache solution with good retrieval 
performance. 

III. QUERY LOG ANALYSIS 

The dataset used in our experiments is an English data set 
enwiki downloaded from Wikipedia with about 5 million 
documents included. The compression index file is 5.2GB. The 
query log comes from the AOL search engine, containing 
approximately 3519003 queries in total. Among them, there are 
1197567 different queries, 580116 different query terms, and 
6535327 different intersections. The average length of a query 
is 2.23, and the longest query contains 132 terms. We analyze 
the search engine query log, and find that it has some obvious 
query term combination characteristics. 

(1) As shown in Fig. 1, the query, query term, and 
intersection all follow the power-law distribution with α being 
0.73, 1.1, and 0.76, respectively. (2) The majority of the 
queries have a length less than or equal to 3. However, queries 
need to occupy 80% of the total workload in search engine 
whose length is more than 3 [6]. (3) With the increase of k, the 



 
(a) Query frequency distribution 

 
(b) Term frequency distribution 

 
(c) Intersection frequency distribution 

Fig. 1. Frequency distribution of the query data set 

support of k-itemset is in non-ascending order. (4) The number 
of hit counts of the intersection is relatively low, which is one 
or two in most cases. (5) Users’ queries meet the closure 
properties of frequent itemsets. 

The result cache and posting list cache make good use of 
the query’s and term’s localities. They have very good 
performance on queries whose length is less than 3. 
Nevertheless, queries whose length is larger than 3 often need 
to consume more I/O and computing resources. From the 
above discussions, we can observe that the intersection cache 
can be used to alleviate this problem. Thus, in our TLMCA 
design, we integrate all of them together to achieve optimal 
performance. 

IV. THREE-LEVEL CACHE ARCHITECTURE 

In TLMCA design, we add an intersection cache on top of 
the common two-level cache (RC and PLC) in the memory. 
The caching system architecture is shown in Fig. 2.  

As described in the previous section, in TLMCA, result 
cache and posting list cache adopt the relatively simple 
selection policy based on frequency, and the commonly used 
replacement policy of result cache and posting list cache, such 
as LRU, LFU, FreqSize etc, can be applied. However, the 
intersection cache data selection policy is designed based on 
the Top-N frequent itemset mining. We propose a new 
replacement policy with the incremental frequent itemset 
mining based on sliding window to deal with dynamic 
intersection cache, which will be introduced in detail shortly. 

When the search engine receives a user's query with n 
terms (t1, t2, … , tn), the first query process step s1 is to detect 
the result cache. The second step s2 is to check intersection 
cache. The system extracts all k-itemsets (2≤ k ≤m, m is the 
maximum length of the IC), matches the intersection cache 
from the longest to the shortest depending on the length, and 
returns an intersection’s posting list immediately when hitting 
an item, say I(t1, t2, t3). The third step s3 is to review the 
posting list cache with the last remaining terms (t4, t5, …, tn). It 
will take out term t4’s posting list from the cache, and fetch 
(PL(t5), …, PL(tn)) by accessing the hard disk at last. The 

fourth step s4 is that Index Servers return the result (r1, r2, …, 

rk) to the Web Server after the operations of intersection ( I(t1, 

t2, t3)∩PL(t4)∩PL(t5)∩…∩PL(tn)), page ranking and snippet 

generation and so on. The Web Server receives partial results 
from each Index Server. Finally, the fifth step s5 is to generate 
a new top-k query result (r1’, r2’, ... , rk ') after summary, forms 
a final result page, and returns it to the user. 

V. AN INTERSECTION CACHE DATA STRATEGY BASED ON 

FREQUENT ITEMSET MINING 

In TLMCA, we design a Top-N frequent itemset mining 
algorithm based on FP-Growth for our purpose. It treats the 
query log as a transaction database D, terms are considered as 
the items in D. We introduce several parameters, including the 
number of frequent itemset mining (N=300,000) and the 
maximum length of the intersection cache (maxLength=3). 
Algorithm 1 shows the detail procedure of intersection cache 
selection strategy based on the frequent itemset mining 
(ICSS_FIMI). 

Algorithm 1. ICSS_FIMI 

1  Input: maxLength, N, query log on hard disk 

2  Output: a list of Top-N intersections 

3  while (the term in the query log) 

4     Calculate the support of the term 

5  end while 

6  Sort terms in descending order according to their support 

7  while (the query in the query log) 

8     Reorder terms in descend according their support 

9  end while 

10Build a complete frequent prefix tree (FP-Tree) 

11 using the processed queries 

12 while (the term pair in the query log) 

13    Calculate the support of the term pair 

14 end while 

15 Sort term pairs in descending order according to 

16    their support 

17 Supmin = the support of the Nth term pair 

18 while (node on the FP-Tree) 

19      if (Supmin>the support of the node) 

20          Delete the node from the FP-Tree 

21      end if 

22 end while 

23 Create a list 

24 while(node on the FP-Tree)  

25     Build the frequent conditional pattern base (FCPB) 
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Fig. 2. Caching system architecture in search engine 

26        of the node 

27     if(2<=the size of intersection<=maxLength) 

28 if(the support of the intersection >= Supmin) 

29                 Add it and its support to the list 

30 end if 

31    end if 

32 end while 

33 Sort all the intersections in the list according to their 

34    support 

35 while(the intersection in the list)  

36    if(N<=the intersection’s index) 

37         Remove the intersection 

38    end if 

39 end while 

40 return L 
 

As shown in Algorithm 1, it mainly takes advantage of the 
third characteristic of the query log. The space and time 
overhead is relatively low when using FP-Growth algorithm to 
mine out the Top-N frequent itemsets. The algorithm’s time 
complexity is F=O(M2*logM +M*T). Since the time overhead 
mainly depends on term pairs’ sorting and searching the 
condition pattern base, where M is the number of different 
query term and T is the number of query. In TLMCA, we filter 
out queries whose length is too long because these queries are 
seldom, they will seriously affect the performance of the 
algorithm but have little improvement on the intersection data 
to be mined out.  

In TLMCA, we adopt a periodical global replacement 
strategy for intersection cache to maintain intersection cache 
data’s time-effectiveness. However, the data structure of FP-

Tree strongly depends on the support of each item and the 
minimum support. It leads to the release and rebuilding of FP-
Tree in memory and re-mine out frequent patterns again. 
Therefore, we introduce the Trie-Tree data structure to provide 
efficient intersection cache data replacement strategy based on 
incremental frequent itemsets mining (ICRS_IFIMI). 

VI. PERFORMANCE EVALUATION 

TABLE 1 summarizes the hardware and software 
environment settings. Our simulative search engine is based on 
Lucene3.0.0. For simplicity, we use one single search node 
instead of distributed search cluster. In our experiments, we use 
the last one hundred thousand queries as test data and the 
previous queries as training data. Our experiments test with 
AND query semantics and other logical operators will be added 
in the future. We test with longer data set in the experiments, 
and the result is similar. Our evaluation compares the retrieval 
performance of result cache and posting list cache, and 
examines the efficiency of intersection cache data strategies. 

A. Retrieval Performance with Different Architecture Levels 

The retrieval performance comparison and analysis are 
among one-level cache (1LC), two-level cache (2LC) and 
three-level cache (3LC). At the same time, we also compare 
the response time of existing intersection caching policy, and 
explore the characteristics of intersection cache data itself. The 
memory cache size ranges from 0 to 400MB in all experiments. 

1) One-level Cache: Fig. 3(a) shows the average response 

time of the one-level cache. “RC” and “PLC” are the dynamic 

result cache and the posting list cache, “IC_static” is the static 

intersection cache and “IC_dynamic” is the dynamic intersection 



 

   

(a) The performance of 1LC (b) The performance of 2LC (c) The performance of 3LC 

Fig. 3. Retrieval performance with different architecture levels 
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Fig. 4. Performance comparison over different strageties 

 

TABLE 1. HARDWARE AND SOFTWARE ENVIRONMENT SETTINGS 

Test-plat form Environment 

IR Tool Lucene 3.0.0 

Data set Enwiki-20090805-pages-articles.xml 

Query log AOL-user-ct-collection 

CPU/RAM Intel Core2DuoP8600(2.40GHz\1066MHz\3072KB)/4GB 

OS Window 7/ Ubuntu 10.04  

HDD HITACHI HTS545025B9A300 250GB 

 

cache. All the dynamic caches apply the simple LRU 

replacement policies. As we can see from the figure, the 

dynamic IC performs the worst. IC itself can bring retrieval 

performance improvement to some extent. However, it is not 

as prominent as the RC and PLC. 

2) Two-level Cache: Fig. 3(b) shows that the retrieval 

performance of two-level cache. “RC+IC_10:0” means that 

only result cache occupies the memory, and “PLC+RC_8:2” 

means that the proportion of memory space allocation for 

posting list cache and result cache is 8:2. We can observe that 

all two level cache policies perform better than one-level 

cache. From a series of experiments, the retrieval performance 

of two-level cache is better when the memory space 

proportion of RC and PLC, RC and IC, PLC and IC are 2:8, 

8:2 and 8:2, respectively. 

3) Three-level Cache: We use a small amount of memory 

to store intersection cache besides the result cache and posting 

list cache, which forms a three-level cache. The result is 

shown in Fig. 3(c). From the figure we can see that all three-

level cache strategies perform better than two-level cache ones. 

The average performance improvement is 27%. When the 

memory space proportion of RC, PLC and IC is 2:7:1, the 

system has the least response time. This is mainly because the 

small intersection cache hit the frequently accessed query term 

combinations. It not only reduces the disk I/O accesses, but 

also reduces the index intersection computation overhead. 

B. Performance Comparison over Different Strategies 

To investigate the performance of different strategies, we 
carry out experiments to compare with the offline Greedy 
strategy and the online Landlord strategy proposed in [6]. The 
result is shown in Fig. 4(a), where “RC+PLC +PC_Online” is 
the three-level cache of projection online Landlord strategy, 
“RC+PLC+PC_Offline” is its projection offline Greedy 
strategy, and “RC+PLC+IC_Offline” is our strategy. As shown 
in the figure, the online method has the worst performance. 
The offline Greedy strategy performs much better for small 
caches. With the increase of the cache capacity, our strategy 
performs roughly the same as the offline Greedy strategy. 
However, the projection selection efficiency is very low. We 
will discuss it in Section VI(C). 



On the other hand, we further investigate the optimum 
maximum length (maxLength) of the intersection. The retrieval 
performance is the best when the maximum length of 
intersection is 3. The result is shown in Fig. 4(b). The optimal 
length can be adjusted according to different characteristics of 
query in our intersection cache data selection strategy. Hence, 
our strategy is more flexible. 

C. Selection Efficiency of Intersection Cache  

In this experiment, we study the efficiency of different 
intersection strategies. Fig. 4(c) shows the efficiency of the 
offline projection selection and our intersection selection. In 
the process of offline selection of the intersection data, the 
offline Greedy strategy needs to consume a tremendous long 
time for a large amount of training data though the analysis is 
off-line. The analysis time means the time to mine top three 
hundred thousand intersections from the training data while the 
training window ranges from ten thousand to five hundred 
thousand. The offline Greedy strategy uses about 4 days when 
the training queries are five hundred thousand. Thus, it is not 
acceptable in practice. Our FIMI strategy runs much faster, it 
only needs about 65 minutes due to the adoption of FP-Tree 
structure. It can improve the time and space overhead in the 
analysis process. In addition, our strategy is more flexible and 
space-saving to set the maximal length of the intersection 
according to the query characteristics. 

VII. CONCLUSION AND FUTURE WORK 

In this paper, we analyze the search engine query log 
characteristics and then propose TLMCA, a three-level cache 
architecture in which we add a static intersection cache on the 
basis of result cache and posting list cache in the memory. The 
intersection cache selection strategy is based on the Top-N 
FIMI of high efficient FP-Growth and the intersection cache 
replacement strategy is based on the incremental frequent 
itemset mining of Trie-Tree. The retrieval performance has 
been improved significantly. With the novel design, TLMCA 
system not only reduces the number of random disk I/O 
accesses, but also reduces the CPU computational overhead. 
Furthermore, we also explore the property of the intersection 
cache itself and its effect on result cache and posting list cache.  

Overall, this paper is the first to use FIMI strategy to select 
intersection cache data for search engines. There are several 
issues need further explorations. First, in this work, we assume 
that the index files stored on HDD are static. However, the 
dynamic scenario should be considered. Second, along with the 
gradual rise of in-memory computing in recent years, the 
optimization of the cache and index structures in memory 
could be considered to further improve the retrieval 
performance. 
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