
Semantic SPARQL query in a relational database

based on ontology construction
Mohamed A.G. Hazber1, Ruixuan Li1+, Xiwu Gu1, Guandong Xu2, Yuhua Li1,3

1School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China
2Advanced Analytics Institute, Faculty of Engineering & IT, University of Technology Sydney, Australia

3State Key Laboratory of Software Engineering, Wuhan University, Wuhan, China

moh_hazbar@yahoo.co.uk, rxli@hust.edu.cn, guxiwu@hust.edu.cn, guandong.xu@uts.edu.au,
idcliyuhua@hust.edu.cn

Abstract— Constructing an ontology from RDBs and its query

through ontologies is a fundamental problem for the

development of the semantic web. This paper proposes an

approach to extract ontology directly from RDB in the form of

OWL/RDF triples, to ensure its availability at semantic web. We

automatically construct an OWL ontology from RDB schema

using direct mapping rules. The mapping rules provide the basic

rules for generating RDF triples from RDB data even for column

contents null value, and enable semantic query engines to answer

more relevant queries. Then we rewriting SPARQL query from

SQL by translating SQL relational algebra into an equivalent

SPARQL. The proposed method is demonstrated with examples

and the effectiveness of the proposed approach is evaluated by

experimental results.

I. INTRODUCTION

The semantic web is one of the most important research

fields that came into light recently. It is a vision of the W3C [1]

to make web information readable not only by human beings

but also by machines. Ontology is a key enabling technology

for the semantic web applications. It plays a crucial role in

solving the problem of semantic heterogeneity of

heterogeneous data sources [2] and contributes to improve

system interoperation. The W3C has recommended several

formats of languages for representing web ontology, such as

resource description framework (RDF) [3], RDF Schema [4],

and web ontology language (OWL) [5]. Moreover, the

semantic query languages for web ontology is recommended,

such as SPARQL [6, 7]. Since SPARQL is the standard query

language for the RDF data model, which is supported by the

Jena API [8], we accordingly use SPARQL query in this study.

Currently, the bulk of web content “deep web” is stored in

relational databases (RDBs) with no near future vision for

massive global RDB to RDF triple store migration. The

success of semantic web depends on its ability to access RDBs

and their content by semantic methods. Therefore, it is highly

desirable to generate ontology from RDB resources mainly in

order to publish data as RDF/OWL on the web and to

combine a relational data with existing RDF/OWL for data

integration. Recent approaches have been developed by W3C

RDB2RDF Working group and proposed a basic

transformation of RDB data to ontology (RDF) [9, 10]. The

RDF can be queried through semantic query SPARQL [6, 7,

11] to provide a semantic query on RDF data.

Though integrating a database with the semantic web is a

hard task to conduct, several important problems remain to be

investigated. Some of the primary obstacles in integrating

RDBs with semantic web are that, how an ontology can be

constructed automatically from RDBs as RDF/OWL. Being an

important step towards realizing benefits of semantic web

research, and how the user can be assisted to formulate

queries in order to retrieve more accurate information. A lot of

difficulties exist in generating ontology from RDB or

querying, including unclear generation approaches, query

formulation, manage and query data stored in RDF files,

determination of how to retrieve the transformation data,

analysis of RDB and ontology, and their similarities, and

dealing with relationships and null values.

 In this paper, we identify and discuss the problem of direct

mapping RDB to ontology including querying relational data

and its ontology using semantic query (SPARQL). Two basic

challenges make the problem interesting. Firstly, it is

imperative for the community to develop fully automated

method for bridging relational database content and the

semantic web using ontology in the form of OWL/RDF data.

Secondly, it is extremely difficult to express queries against

graph structured ontology in the relational query language

SQL.

The goal of this paper is to propose a novel approach for

automatically building ontology (RDF graph with OWL

vocabulary) from RDBs (Schema and data) and manage

querying semantically on generated ontology. In order to

accomplish an alternative for common query (SQL) on RDB

data, the combination of ontology (OWL/RDF graphs) and an

exemplary semantic query language (SPARQL) are

investigated. Our main contributions in this paper can be

summarized as follows.

 We propose a direct mapping rules to construct an

ontology schema and data from RDB (even for column

contents null value).

 We propose a query transformation approach by

translating SQL relational algebra into an equivalent

semantic query (SPARQL).

 We test the proposed approach on an RDB that contains

an important concept of RDB scenarios, and

demonstrate the effectiveness of the approach with

examples and experimental analysis. Every relational

algebra query on an RDB data can be translated into an

equivalent SPARQL query on ontology instance, which

indicates that there are no any lose of information

during the transformation process.

The rest of the paper is organized as follows. Section II

presents related work. Section III and IV describe our

approach, which construct ontology, generating RDF triples,

and enable query on RDF triples. Experimental analysis is

provided in Section V. Finally, Section VI concludes this

paper with the future work.

II. RELATED WORK

Several efforts are made to integrate RDBs with the

semantic web. During the last decade, data hosted in RDBs

accessible to the semantic web has been an active field of

research. Usually, an ontology model is constructed from

RDB model, and the contents of the RDB are transformed to

generate ontology instances [12, 13]. Li, et al. [14] proposed

an automatic ontology learning approach to acquire OWL

ontology from RDB automatically by using a group of rules,

extracted ontology in an RDB using ER Data Model. This

procedure has a disadvantage of losing the information

because only the schema structure of an RDB has been used

therefore, actual data is not utilized. On the other hand

Astrova, et al. [15] proposed a novel approach for automatic

transformation of RDBs to ontologies, where the quality of

transformation is also considered. An RDB is written in SQL,

and an ontology is written in OWL. The approach suffers

from many shortcomings such as neglecting the formal

definition which lead to ambiguous transformation rules.

While, Zhang and LI [16] presented a method for automatic

ontology building using the RDB resources to improve the

efficiency. This method firstly, maps the analysis of ontology

and database, secondly constructs rules of ontology elements

from RDB. Then the practical experiments prove the method

and system feasibility, however, this method ignores some

tables that express association data, which could not be

counted in the concepts. It should be mentioned that the

previous studies did not deal with null-valued data through

data conversion of RDB to RDF, and they did not investigate

the transformation of query on RDF triples.

Another work dealing with Triplify Auer, et al. [17] offers

a Linked Data publishing interface and provides a simplistic

approach to publish RDF from RDB. Recently, the W3C

RDB2RDF Working Group proposed a standard mapping

language, called R2RML [18], to express RDB-to-RDF

mappings. These approaches may require expert for complete

mapping of RDB to the existing ontology, particularly to

avoid problems that occur during mapping constraints.

The database queries, which are based on concepts,

properties and instances defined in an ontology and that return

semantically relevant results are referred to semantic query.

There are several possibilities for querying ontologies from

RDBs. RDF query language SPARQL [6, 7] provides a

semantic query on RDF data, which focuses in transforming

traditional SQL queries into RDF query languages. D2R

Server [19] is engine that directly maps the RDB into RDF

and uses D2RQ mappings to translate requests from external

applications to SQL queries on the RDB. Lee and Sohn [20]

presented a framework which can automatically construct an

ontology from an RDB schema and can be clearly identified

the semantic relations between data through the ontology

construction. The constructed ontology help to understand

data structure and acts as an assistant tool to efficiently query

the data from RDB. Ranganathan and Liu [21] were defined

three types (direct, inferred, and related results) of

semantically relevant results based on how results are

obtained and their relationship to the semantic query. The end-

user issues semantic queries based on ontology concepts and

these queries are mapped onto plain syntactic SQL queries.

The problem of query rewriting considered how to

reformulate a query expressed in SPARQL over mediated

schema into an equivalent SQL query targeting the underlying

RDB. Cyganiak [22] discussed the transformation of

SPARQL to relational algebra and outlines a set of rules to

establish the equivalence between this algebra and SQL. Their

study describes operators such as selection and inner join

implemented over RDF and correlates RDF relational algebra

to SQL. Their approach lacks the nested OPTIONAL pattern

problem. Recently, the ontop system Rodriguez-Muro, et al.

[23] also enables SPARQL queries to RDF views of RDBs by

translating SPARQL to datalog programs, which are rewritten

and translated to SQL.

Compared with existing approaches, our work is quite

different in terms of an integrated method. For example, we

extract ontology schema from RDB schema, transfer the

contents of RDB (considering null-values) to RDF triples, and

enable applications to query on RDF triples by creating new

rules using SPARQL query corresponding to SQL query on

RDB instances. The strength of our work it includes the

important concepts of RDB, such as constraints, relationships,

and null-values for all phases of the approach that are

demonstrated with examples.

III. RULES FOR GENERATING ONTOLOGY FROM RDB

The contents of this part are represented by running

examples, which includes the important cases, such as

relationships of RDB as shown in Fig. 1.

A. Rules for constructing RDB schema to ontology

This step maps RDB schema to an ontology, which

provides the basic rules for generating RDF triples from RDB

data. Firstly, we define some predicates that will be used in

this work as follows. Identify relationship between two tables:

 , (), (), , .

()

 1 ()

fk
i 1 n k 1 n i k

i k

i k.

i k are name of tables TB and A attr TB B attr TB TB TB TB RDBSi k i k

TB (A ,...,A),TB (B ,...,B),TB .A TB .B

TB ,A,TB ,B

TB .A,TB B

   







HasRelationship

IsRelatio ()nship

Identify binary relation:

1 2

2 1 2 1 1

1 2

(): , , , ,

, ,

, , , , , , ?

,

(. , .) (. , .)

(

, , , , ,

()

) () (

2

)

()

b i b k

b i k

b i k

b

b i k are name of tables b i b k and i k and T

pk A A TB pk B TB pk C TB

TB

TB A TB B TB A T

A A TB B T

B

B

B

C

C

T

  





Bin

IsRelationship IsRelations

aryRel

ISBinaryR

h p

)

i

el (

, , .b i kB TB TB TB RDBS 

Then the mapping process is done progressively based on

the rules in Table I.

TABLE I. RULES OF MAPPING RDB SCHEMA TO ONTOLOGY

Rule DB Concept Case Condition OWL/RDF

1 Table (T) !IsBinRel(T) Owl:Class(T)

2 Column T(A) !(PK(A,T)FK(A,T

)
Owl:DatatypePropert

,rdfs:domain(T),

rdfs:range(xsd)

3 PK constraint PK(A,T) Owl:InverseFunction

Property(A1)

RestrictionProp(A,mi

nCard,xsd^^int 1)

4 1:1

(Fig. 1a)

T1(A1..An)∞T2(B1..

Bn),FK(A1,T1),PK(

B1,T2),A1≠null,!(IsB

inRel(T1)

IsBinRel(T2))

OjectProperty(A1,T1

domain,T2raing),

RestrictionProp(A1,h

asValue,T2),

RestrictionProp(A1,

minCard,xsd^^int 1)

5 1:m

(Fig. 1b)
T1(A1..An)∞T2(B1..

Bn),FK(A1,T1),PK(

B1,T2),valueOf(T1.A

1,From,T2.B1),A1≠n

ull,!(IsBinRel(T1)

IsBinRel(T2))

ObjectProperty(A1,T

1domain,T2raing) ,Restric

tionProp(A1,allValue

From,T2),

RestrictionProp(A1,

minCard,xsd^^int 1)

6 m:n

(Fig. 1c)
T1(A1,A2),T2(B1..B

n),T3(C1..Cn),IsBin

Rel(T1)→BinRel(T1,

A1,A2,T2,B1,T3,C1)

OBP(B1,T2domain,T3ra

ing),RestrictionProp(B

1,allValueFrom,T3),

RestrictionProp(B1,

minCard,xsd^^int 1),

OBP(C1,T3domain,T2ra

ing),RestrictionProp(C

1,allValueFrom,T2),

RestrictionProp(C1,

minCard,xsd^^int 1)

B. Generating RDF triples

The RDF triples are generated from RDB instance, in order

to establish simple way and to access RDF triples using

semantic search technologies. If a table T is mapped to the

class then all rows of the table are transformed to the instance

of RDF graphs. Each column in table T can be transformed to

the data properties of the instance unless its value is null. The

properties generated from foreign key columns are linked

between classes. To ensure the uniqueness of resources, we

form the IRI of the triples by combination of the name space

(base IRI), table name, and primary key values.

IV. REWRITING SPARQL FROM SQL ALGEBRA

The semantic web applications need to be accessing

relational database contents by semantic methods. Currently,

SPARQL is a W3C recommendation, and has become the

standard language for querying RDF data. Assume a given

relational instance I over table (s) TB and ontology

instance Io over class (es) CLS . We proof and explain that, for

every relational algebra query ()Q I(TB) , there is a SPARQL

query oQ (Io(CLS)) such that for every instance I of

TB (possibly including null values) satisfying the following

function:

() () 1

1

1 1 1

() () : () { ,..., },

{ . ,..., . },

() { ,..., }, { , . ,..., . }

I TB Io CLS n

i i i nc

n i id nc nc

Q I TB rw rw

rw rw A rw A

Io CLS gr gr gr t t A t A

Q 





  (7)

Where I is a set of rows 1,..., mrw rw over TB that denoted

by 1() { ,..., }mI TB rw rw for all attributes in TB . The notation

.i irw A refers to the value of a row irw in a column iA . Io is a

set of triples 1,..., mt t of the graph rgr over CLS that denoted by

1() { ,..., }mIo CLS t t for all datatype properties in CLS. The

notation 1 1.t A refers to the value of triple 1t .in a property 1A .

The idt is the first triple of row that its type is the class that

determine the table from which the triple is generated. The

operator OPTIONAL is used to avoid the loss of information,

because our rules that generated RDF triples from RDB data

does not translate null-values. Therefore, the rules of semantic

query in this section handles null-value in query expressions

through two operators BOUND and OPTIONAL. Then the

equivalent SPARQL queries for the relational algebra

operations: Selection (), Projection (), Rename (),

Union (), Difference (\), Natural Join (), Left Join (),

and binary relation were defined.

1) Rules for fundamental operations of relational algebra

Rule7(Selection()): The selection  is a unary operation in

relational algebra. The expression

1 21(..) : 0, { , , ,

(), (), like*, IN}, { , , , , , },

{&&,||}, , () .,

p n i k i

i i

i k is a constant val

TB TB n p A A A v p p

IsNull A IsNotNull A

A A att TB v ue

   





   

      

 

Where the P stands for an expression condition in the

set 1 2{ , , , (), (), , }i k i i iA A A v p p IsNull A IsNotNull A Like IN   ,  is a

binary operation of the set { , , , , , }      ,  is a logical

operation {and &&, or ||} , and 1 2,p p are expiration condition.

Therefore, we need to consider all the cases to define a

query Q to satisfy the defining condition (7).

(), var()

1. () (()) or (

 regex(,)) :

iA v i

i A att TB ?A GPi i

TB GP ?A = v

GP ?A v

 

 

 FILTER

FILTER (R_7.1)

1 and 2 01 01 2015

= 1 && || "2015-01-01" xsd:date

2. () (

 ())

A v A v or Ai k d

?A v ?A v2 ?Ai k d

TB GP     


 



FILTER (R_7.2)

()3. () ((bound())) 3iIsNotNull Ai
TB GP ?A  FILTER R_7.)

SPARQL FILTER restricts the solutions of a query by

imposing constraints on values of bound variables.

Rule8(Projection): The projection  is a unary operation

in relational algebra that selects of the relevant attributes of a

relation. Let the expression

Student

PK Stud_Id

 Name

FK1 Lab_No

FK2 Post_No

Lab

PK Lab_No

 Lab_Name

FK1 Prof_No

Stud_Cors

PK,FK1 Stud_Id

PK,FK2 Cors_No

Courses

PK Cors_No

 Cors_Name

Professor

PK Prof_No

 Name

 Direct_Research

Postion

PK Post_No

 Note

a

b

c

d

Fig. 1. RDB laboratory (RDBLAB)

. [|]()
i1 n Order by TB A ASC DESCTB.A ,...,TB.A

Q TB ,

and 0, {1,..., }n i n  . Then the equivalent query Q to satisfy

the defining condition (7) can be defined as:

 
1 Order TB.Aby [i ASC

order by [ASC|DESC](?

|DESC

T

]

B.Ai)

. , , .

... { }

n

1 n

TB A T

?TB.A ?TB.

B

A

A
Q T

where GP

B Q


  

Select (R_8)

Rule9(Rename ): A rename  is a unary operation in

relational algebra that renames one column to another name

and projects all columns of Q . Let the expression

()
1 n 1 n(TB.A ,...,TB.A) (B ,...,B)

Q TB


 . Then the equivalent

query Q to satisfy the defining condition (7) can be defined as:

 
   1 1

. , , . , ,

() ... () { }

n n

1 1 n n

TB A TB A B B

?TB.A ?B ?TB.A ?B

Q TB Q

Where GP

  
   

AS ASSelect (R_9)

The SPARQL expression equivalence in this rule is hold

because the rename operator in relational algebra renames one

column to another and projects all Q columns.

Rule10(Union ): A union  is a binary operator that

combines the result-set of two or more projects()-Select

statements. Let the expression

1() ... (), 1n
1 1 1 nc 1 n ncTB .A ,...,TB .A TB .A ,...,TB .An

Q TB TB n    

Then the equivalent query Q to satisfy the defining

condition (7) can be defined as:

   1
1 1 1 1

 ...

 ... ? .

. , , . . , , .

{ }} ...

{ { }}}

...

*

{{

n
nc n n

1 1 1 nc

nc

1

?TB .A ?TB .A

?TB .A TB An n nc

TB A TB A TB A TB A

Select where

GP

Select where G

Q TB TB

Q Selec ere

P

t wh
 



  



UNION UNION

(R_10)

Rule11(Difference \): A difference \ is an operator that

minuses the result-set of two relations 1TB and 2TB where two

relations should have the same attributes. The result

of \1 2TB TB is a relation that contains all rows in 1TB but not

in 2TB . Let the expression

   1 2
nc nc1 1 1 2 1 2TB .A ,? TB .A TB .A ,? TB .A

Q TB TB 

Then the equivalent query Q to satisfy the defining

condition (7) can be defined as follows:

   1 2
1 1 2 1 2

1 1 1 1 1

. , , .. , , .1

?A ... ?A a NS:TB . NS:TB . A ?A .

 a NS:TB . NS:TB .A .2 2 1

 Where { ...

{ }}

nc nc

n

TB A TB ATB A TB A

?y ?y

Q TB TB


  
?x ?x

?x

Select

FILTER NOT EXISTS (R_11)
For example Q1:

 
?Lab_No ?x a NS:Lab. ?x NS:Lab.Lab_No ?Lab_No

?y NS:Student.Lab_No ?x. ?y a NS:Stud n

_

e

.

t

. _
()

 Where { .
 { .}}

Lab Lab No Student Lab No
StudenLab t  Q1

SELECT
FILTER NOT EXISTS

?Lab_No order by

2) Rules12 for a relational algebra join

The SQL join clause is used to combine rows from two

tables or more, based on a common field between them.

Rule12.1(Natural join ): A natural join  is a binary

operator that combines rows from two tables or more

1 2 ... ,nTB TB TB  based on a common field between them. The

result of 1 2TB TB is a set of all combination rows in 1TB and

2TB that are equal on their common column names. Let the

expression

 1 2
1 1 1 1 2 1 2 2. , , , . , . , , , .

,
n nTB A TB A TB B TB B

Q TB TB
 


1 i 2TB .A TB .Ai

where

1 2. and .i iTB A TB A are common attributes. Then the equivalent

query Q to satisfy the defining condition (7) can be defined as:

 

 
 

1 1 1 1 2 1 2 2
1 2

1 1 2 1 2 2

1

. , , , . , . , , , .

{

? . ? .

?

.

:

n n

1 n1 n

1 1 1 1 1

1 n1 1 n

TB A TB A TB B TB B
Q TB TB

Select TB A ?TB .A TB B ?TB .B

Where ?x a NS :TB . ?x TB .A ?TB .A

?x NS :TB .A ?TB .A

a

NS

SN

 
 

 




1 i 2 i

1 i 1 i 1 i

TB .A TB .A

Optional

Optiona

? . ?

l

?x NS : TB .A TB .A TB .A

 
 

2

2

2

2

22 2. }

.1 1

n n

:TB .

S :TB .B ?TB .B

S :TB .B ?TB

N

.BN




1 i

1 i

Optional TB .A

Opti

?

onal TB .A (R_1? 2.1)

 The graph pattern GP {?x NS:TB1.Ai ?TB1.Ai. ?TB1.Ai a

NS:TB2.} contains object property (NS:TB1.Ai) represented

by the variable ?TB1.Ai, which used to connect between two

classes NS:TB1 and NS:TB2. The OPTINAL operator for all

properties of class was used (to avoid lose triples of property

values) except the common property (to ensure that its value is

not-null). If we change the rule condition using BOUND

operator in part 1 1(? : . ? . {) to ?i ix NS TB A TB A x

1 1 1: { {? : . ? .. } ?a  i iNS TB Optional x NS TB A TB A FILTER

 1(? . }...}i?Bound TB A , the same result was observed. The

following SPARQL query example (Q2):

, . , . _
()

 ?Stud_Id ?name ?lab_no ?lab_name

{?x a NS:Student. {?x NS:Student.Stud_Id ?Stud_Id.}

{?x NS:Student.Name ?nam

Student.Stude_Id Student Name Lab Lab Name
Student Lab  Q2

Select Where

Optional

Optional e.}

a NS:Lab.

{ NS:Lab.Lab_Name ?lab_name.} } order by ?Stud_Id

?x NS : Student.Lab_No ?lab_no. ?lab_no

Optional ?lab_no

Rule12.2(Left Join): Let the expression

 
1 1 1 1 2 1 2 2

1 2
. , , , . , . , , , .

,
n nTB A TB A TB B TB B

Q TB TB
 

 
1 i 2 iTB .A TB .A

 and 1 i 2 iTB .A TB .A are common attributes. Then the

equivalent query Q to satisfy the defining condition (7) can be

defined as follows:

 

 
 

1 1 1 1 2 1 2 2
1 2

1 1 2 1 2 2

1 1

. , , , . , . , , , .

{

?

? . ? .

.

. .

n n

1 n1 n

1 1 1 1 1

1 n1 n

TB A TB A TB B TB B
Q TB TB

Select TB A ?TB .A TB B ?TB .B

Where ?x S :TB . ?x S :TB .A ? TBa N .A

?x S :T

N

B .A B AN T

 
 

 




1 i

1 i 1 i

TB .A TB .A2 i

Optional

Optional

?x NS : TB .A TB .A T

Optiona

? . ?

l  
 

2

2

2

2

22 2

. }

.
1 1

n n

a S :TB .

S :TB .B ?TB .B

N

S :TB .B ?TBN B

N

.

 
 

  
 
 

1 i

1 i

1 i

B .A

Optional TB .A

Optional TB .A

(R_1

?

?

2.2)

For example Q3:

http://en.wikipedia.org/wiki/Unary_operation

, . , . _
()

 ?Stud_Id ?name ?lab_no ?lab_name
{?x a NS:Student.

{?x NS:Student.Stud_Id ?Stud_Id.}
{?x NS:Student.Name ?na

Student.Stude_Id Student Name Lab Lab Name
Student Lab  Q3

Select
Where
Optional
Optional me.}

a NS:Lab. }
{ ?lab_no NS:Lab.Lab_Name ?lab_name.}

  
 
  

?x NS : Student.Lab_No ?lab_no.
Optional ?lab_no

Optional

C. Rules13 for a binary relation

Assume that Q is a query algebra over binary relation.

Then the equivalent query Q to satisfy the defining condition

(7) can be defined as follows:

1 1

2 2

 ?
{ : . : .B .

: . : . .}

Select ?A B
Where a NS TB NS TB

a NS T

Q

B NS TB A






?A ?A ?B
?B ?B ?A (R_13)

The variables (?A and ?B) of this rule show the important

positions for conditional clauses to obtain the equivalent

SPARQL query according to expression of the binary relation

algebra. As well to get the same results returned by expression

of the relational algebra on the RDB. An example of this rule

is Q4 that represents the binary relation in SPARQL query.
 ?Stud_Id ?name ?Cors_No ?Cors_Name

{
?A NS:Student.Stud_Id ?Stud_Id.
?A NS:Student.Name ?name.

Q4 Select
Where ?A a NS : Student. ?A NS : Student.Cors_No ?B.

?B a NS : Courses. ?B NS : Courses.Stud_Id
?B NS:Courses.Cors_No ?Cors_No.
?B NS:Courses.Cors_Name ?Cors_Name.}

 ?A.

From the previous analysis, it can be clearly observed that

our rule satisfies the condition definition (7). Moreover, the

transformation rules in Section III and IV designed in clear

forms and keep the tracks of attribute keys in the tables.

Therefore, these rules can be extended to generate RDB from

ontology.

V. EXPERIMENTAL ANALYSIS

The information retrieval system was implemented in the

platform of Windows 7 (32-bit) operating system with the

specification of CPU Intel® Core™ i5-2410M 2.30GHz,

RAM 6GB. In order to validate the efficiency of our rules in

terms of quantitative, the dataset of RDB (RDBLAB) has been

increased to include 70000 rows. In the generated ontology,

RDF triples have 442668 triples. Table II shows the number

of RDBLAB row tables, null-values in each column tables and

number of rows in which null-values appear during the

relationship between the tables. In this table, the null-values

reflect the size of data that are not lost when our rules are used.

Moreover, the table shows the numbers of tuple classes are

corresponding to the row tables.

To reflect the validity of our approach, an extra example

(Q5 and Q6) were added.

5:
Stud_Id,Lab.Lab_No,Prof.Name

(Student Lab) Professor)(Q  

This query represents LEFT JOIN condition between three

tables Student, Lab, and Professor in SQL query, to obtain the

stud_Id and name, lab name, professor name of the all

students who have /or have not the place in the lab and

professors of the lab. Fig. 2 shows the corresponding SQL

query relational algebra query and the results returned by the

execution through RDBMS (MySQL).

Therefore, the SPARQL corresponding to above query is as

follows:

SELECT ?Stud_Id ?name ?lab_no ?lab_name ?prof_name

WHERE { ?x a NS:Student.

 optional{?x NS:Student.Stud_Id ?Stud_Id.}

 optional{?x NS:Student.Name ?name.}

 optional{?x NS:Student.Lab_No ?lab_no. ?lab_no a NS:Lab.

 optional{ ?lab_no NS:Lab.Lab_Name ?lab_name.}

 optional{ ?lab_no NS:Lab.Prof_No ?prof_no. ?prof_no a NS:Professor.

 optional{ ?prof_no NS:Professor.Name ?prof_name.}}} order by ?Stud_Id

 The returned results are shown in Fig. 3.

Whereas SQL query Q6 can be represented by the

following formula.

 

 

 

ρ(Stud_Id,Name,'Stud') (id,name,type)

ρ(Lab_No,Lab_Name,'Lab',) (id,name,type)

ρ(Prof_No,Name,'Prof') (id,name,type)

6

Lab

Profe

Q Stu

s

d

sor

ent



Therefore, the SPARQL corresponding to above query is as

follows:

SELECT * WHERE {
 { SELECT (?Stud_Id As ?id) (?Name As ?name) ('Stud' AS ?type)
WHERE { ?S a NS:Student.
 optional{?S NS:Student.Stud_Id ?Stud_Id.}
 optional{?S NS:Student.Name ?Name.}
 }} union
 {SELECT (?Lab_No AS ?id) (?Lab_Name AS ?name) ('Lab' AS ?type)
WHERE {?lab_no a NS:Lab.
 optional{?lab_no NS:Lab.Lab_No ?Lab_No.}
 optional {?lab_no NS:Lab.Lab_Name ?Lab_Name.}
 }} union
 {SELECT (?Prof_No AS ?id) (?Name AS ?name) ('Prof' AS ?type)
WHERE{?prof_no a NS:Professor.
 optional{?prof_no NS:Professor.Prof_No ?Prof_No.}
 optional{?prof_no NS:Professor.Name ?Name.}
 }} } order by ?id

Interestingly, the same results were obtained after execute the

Q6 and its SPARQL equivalent (Table IV).

Fig.2. LEFT JOIN query ((Student Lab) Professor)  and the

result returned by DBMS.

TABLE II. RDBLAB TABLE ROWS WITH NULL-VALUE AND ONTOLOGY CLASS TUPLES.

Tables Rows Columns of null-

value

Rows of null-value SPARQL TP used to

return class tuples

Returned
tuples

Student 51000 Lab_No=7614

Age=2500

Students with lab_no is null=7614

Students with age is null=2500

Students with lab_no is not null and

lab.lab_name is null=6448

Students with lab_no is not null and

lab.prof_no is null=3378

{?x a NS:Student} 51000

Lab 1000 Lab_Name=199

Prof_No=111

Rows of lab used by students =33

Rows of lab used by students

with lab_name is null=6

{?x a NS:Lab} 1000

Courses 100 {?x a NS:Courses} 100

Stud_Cors 17800 Q4 17800

Professor 100 {?x a NS:Professor} 100

Fig. 3 Query result on Netbeans console .((Student Lab) Professor) 

This query (Q6) represents projection, rename, and union to

combine three tables Student, Lab, and Professor in SQL

query in the same list. By applying our approach there is no

data loses, even for the null values. Moreover, the

combinations of ontology and SPARQL query have the ability

to provide the same results of RDB using SQL query algebra.

To emphasize the accuracy of our rules that used in Section

IV, we apply all the previous queries (Q1-Q6) on the new

dataset. To show the significance of our approach, additional

SPARQL (Q`) queries are modified from our original queries

SPARQL (Q°) and represented in Table III. These SPARQL

(Q`) queries are then used for comparative and to reflect the

volume of data loss. The queries (Q1-Q6) of SQL(Q) are

applied on RDBLAB data using RDBMS (MYSQL 5.6),

while the queries of SPARQL(Q°) and SPARQL(Q`) are

applied on RDF triples generated from RDBLAB using our

system. The results of queries are shown in Table IV.

The quantitative analyses of dataset shown in Table IV are

represented in Figs. 4 and 5. By using our rules SPARQL(Q°)

the same results are obtained from SQL(Q) and there are no

data losses from SQL(Q) compared to SPARQL(Q`) (Fig. 5).

All these results together reflect the high accuracy and

significance of our rules.

TABLE III. SPARQL(Q`) QUERIES.

Query Conditions used to modify Q`

from original examples of Q°

Q1 If {?x NS:Lab.Lab_Name ?lab_name } added

to get lab name without OPT

Q2 If the OPT deleted from the triple pattern

{?lab_no NS:Lab.Lab_Name ?lab_name.}

Q3 If the OPT that used for LEFT OUTER JOIN

 is deleted

Q4 If {?Stud_Id NS:Student.Age ?age.} added

to get the age of students without OPT

Q5 If the two OPTs that used for LEFT OUTER

JOIN are deleted.

Q6 If all OPTs are deleted from triple patterns

TABLE IV. RESULTS OF QUERIES.

 Q rows Q° tuples Q` tuples

Q1 967 967 774

Q2 43386 43386 36938

Q3 51000 51000 43386

Q4 17800 17800 15300

Q5 51000 51000 40008

Q6 52100 52100 51901

Fig. 4. Comparing between SQL(Q), our approach SPARQL(Q°) and SPARQL(Q`) results.

Fig. 5. Comparing between our approach SPARQL(Q°) and SPARQL(Q`) results.

VI. CONCLUSIONS

Study on ontology construction from RDB is becoming

increasingly widespread in the computer science community,

which includes a definition of domain metadata, relationships

and knowledge of the ontology schema to assist in the query

formulation process. In this paper, we proposed a new

approach for direct mapping of RDB (schema, data, and SQL

query) to semantic web ontology (OWL, RDF, and SPARQL).

The semantic query in a RDB is simulated and implemented

using SPARQL. SPARQL can be considered as a real

alternative to the commonly used SQL access to relational

databases. The effectiveness of the proposed approach is

demonstrated with examples and experimental analysis.

Our approach does not explain in details on how to rewrite

the equivalent SPARQLs from the nested SQL queries which

will be considered in the future works.

ACKNOWLEDGMENT

This work is supported by National Natural Science

Foundation of China under grants 61173170, 61300222,

61433006 and U1401258, Innovation Fund of Huazhong

University of Science and Technology under grants

2015TS069 and 2013QN120, and Science and Technology

Support Program of Hubei Province under grant 2014BCH270.

REFERENCES

[1] T. Berners-Lee, J. Hendler, and O. Lassila, "The semantic web,"

Scientific american, vol. 284, pp. 28-37, 2001.

[2] O. Vasilecas, D. Bugaite, and J. Trinkunas, "On Approach for

Enterprise Ontology Transformation into Conceptual Model," in Proc.

International Conference on Computer Systems and Technologies,

University of Veliko Tarnovo, Bulgaria, 2006, pp. IIIA.23-1- IIIA.23-6.

[3] R. Cyganiak, D. Wood, and M. Lanthaler. (2014). RDF 1.1 concepts

and abstract syntax. Available: http://www.w3.org/TR/rdf11-concepts/

[4] D. Brickley, R. Guha, and B. McBride. (2004). RDF Vocabulary

Description Language 1.0: RDF Schema. Available:

http://www.w3.org/TR/2004/REC-rdf-schema-20040210/

[5] B. Motik, B. C. Grau, I. Horrocks, Z. Wu, A. Fokoue, and C. Lutz.

(2009). OWL 2 Web Ontology Language: Profiles. Available:

http://www.w3.org/TR/2009/REC-owl2-profiles-20091027/

[6] E. Prud’hommeaux and A. Seaborne. (2008). SPARQL Query

Language for RDF. Available: http://www.w3.org/TR/rdf-sparql-

query/.

[7] S. Harris and A. Seaborne. (2013). SPARQL 1.1 Query Language.

Available: http://www.w3.org/TR/sparql11-query/

[8] A. jena. (2015). A free and open source Java framework for building

Semantic Web and Linked Data applications. Available:

http://jena.apache.org/index.html

[9] A. Bertails and E. G. Prud’hommeaux, "Interpreting relational

databases in the RDF domain," in Proceedings of the sixth

international conference on Knowledge capture, Banff, AB, Canada,

2011, pp. 129-136.

[10] M. Arenas, A. Bertails, E. Prud, and J. Sequeda. (2012). A Direct

Mapping of Relational Data to RDF. Available:

http://www.w3.org/TR/rdb-direct-mapping/

http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/TR/2009/REC-owl2-profiles-20091027/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/sparql11-query/
http://jena.apache.org/index.html
http://www.w3.org/TR/rdb-direct-mapping/

[11] J. F. Sequeda, M. Arenas, and D. P. Miranker, "On directly mapping

relational databases to RDF and OWL," in Proceedings of the 21st

international conference on World Wide Web, 2012, pp. 649-658.

[12] H. Mohamed, Y. Jincai, and J. Qian, "Towards Integration Rules of

Mapping from Relational Databases to Semantic Web Ontology," in

Web Information Systems and Mining (WISM), 2010 International

Conference on, Sanya, China, 2010, pp. 335-339.

[13] S. H. Tirmizi, J. Sequeda, and D. Miranker, "Translating sql

applications to the semantic web," in Proceedings of the 19th

international conference on Database and Expert Systems

Applications(DEXA '08), Turin, Italy, 2008, pp. 450-464.

[14] M. Li, X.-Y. Du, and S. Wang, "Learning ontology from relational

database," in Proceedings of 2005 International Conference on

Machine Learning and Cybernetics, Guangzhou, China, 2005, pp.

3410-3415.

[15] I. Astrova, N. Korda, and A. Kalja, "Rule-based transformation of SQL

relational databases to OWL ontologies," in Proceedings of the 2nd

International Conference on Metadata & Semantics Research, Ionian

University, Corfu,Greece, 2007.

[16] L. Zhang and J. LI, "Automatic Generation of Ontology Based on

Database," Journal of Computational Information Systems, vol. 7, pp.

1148-1154, 2011.

[17] S. Auer, S. Dietzold, J. Lehmann, S. Hellmann, and D. Aumueller,

"Triplify light-weight linked data publication from relational

databases," in: Proc. of the 18th International Conference on World

Wide Web, Madrid, Spain, 2009, pp. 621–630.

[18] O. Souripriya Das, O. Seema Sundara, and R. Cyganiak. (2012).

R2RML: RDB to RDF mapping language. Available:

http://www.w3.org/TR/r2rml/

[19] [19] C. Bizer and R. Cyganiak, "D2r server-publishing relational

databases on the semantic web," in Poster at the 5th International

Semantic Web Conference (ISWC2006), Athens, GA, USA, 2006.

[20] H. J. Lee and M. Sohn, "DB schema based ontology construction for

efficient RDB query," in ACIIDS'12 Proceedings of the 4th Asian

conference on Intelligent Information and Database Systems - Volume

Part II, Kaohsiung, Taiwan, 2012, pp. 341-350.

[21] [21] A. Ranganathan and Z. Liu, "Information retrieval from relational

databases using semantic queries," in Proceedings of the 15th ACM

international conference on Information and knowledge management,

Arlington, VA, USA, 2006, pp. 820-821.

[22] R. Cyganiak, "A relational algebra for SPARQL," Digital Media

Systems Laboratory HP Laboratories Bristol. HPL-2005-170, p. 35,

2005.

[23] M. Rodriguez-Muro, M. Rezk, J. Hardi, M. Slusnys, T. Bagosi, and D.

Calvanese, "Evaluating SPARQL-to-SQL translation in ontop," in 2nd

OWL Reasoner Evaluation Workshop (ORE 2013)-Collocated with DL

2013 Workshop, Ulm, Germany, 2013, pp. 94-100.

http://www.w3.org/TR/r2rml/

