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Abstract: With the popularity of the Android platform, more and more hackers take the Android 
platform as the profitable target. Android provides a risk communication defence mechanism 
against malicious applications, which has been demonstrated to be ineffective. It is common to 
quickly identify malicious applications by permission-based analysis methods. Recently, those 
permission-based methods are becoming useless when more and more applications request 
dangerous permissions. The proposed approaches are based on the key insight that the difference 
in the components trigger model in malware applications and benign applications. The malwares 
are interested in monitoring system broadcast to activate malicious components and request more 
permissions. The benign applications are preferable to receive self-define broadcast to activate 
their components and ask fewer permissions. Existing permission-based Android malware check 
methods can identify nearly 81% malware samples, but they also identify many normal 
applications as malware. In this paper, we extend the permission-based approach and employ 
machine learning approaches to identify the malicious applications. We use the datasets of the 
Market 2011, Market 2012, Market 2013 and Malware to evaluate the proposed methods. The 
experimental results illustrate the effectiveness of our proposal. 
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1 Introduction 

Smartphones are becoming increasingly popular, which are 
taking the place of feature phones in recent years. The most 
dominant smartphone operating systems are Google 
Android, Apple iOS and Windows Phone platforms. There 
are many Android app markets on the internet, and the total 

number of applications available for users is very huge. 
However, the popularity of smartphones and the vast 
number of the applications make the Android platform the 
most attractive target to hackers. Currently, various forms of 
the malware applications exist on the Android platform. 
Moreover, many attack techniques, such as app repacking, 
denial of service (DoS) attacks (Traynor et al., 2009) and 
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privilege escalation attacks (Davi et al., 2011), affect the 
applications and system components on Android at runtime 
(Rastogi et al., 2013). 

Google Play is growing faster than the Apple App store. 
However, the application security check in Google Play is 
not as good as the Apple App store, which may check each 
available application manually by software security experts. 
Google provided a security feature, called application 
verification service, to protect against malicious Android 
applications on November 13, 2012. A study shows that the 
application verification service fails to stand up its task, 
which misses 85% malwares that are already known to be 
malicious (Jiang, 2012). Furthermore, Android allows users 
to install third-party applications on the smartphones. It 
increases the risk of infecting malwares. 

The Android security model is based on application-
oriented mandatory access control and sandboxing (Barrera 
et al., 2010; Bartel et al., 2012). Each application assigns a 
unique User ID and a set of permissions at the app 
installation time, which cannot be changed afterwards 
before Android 4.3. There are more than 130 permissions 
that govern accessing system resources or communicating 
with other applications. The Android permission system 
checks corresponding permission assignments at runtime. If 
an application has no appropriate permissions, it will not be 
allowed to access the privileged resources. Users must 
approve the application permission request at the app 
installation stage if they want to run the application on their 
smartphones. ‘App ops’ is a hidden feature in Android 4.3, 
which can control the permissions for the individual app 
after the app installed. However, without extra information, 
the users find it hard to determine which permission is 
harmful since they have rare specific knowledge of Android 
permissions. With this vulnerability, many applications 
request more additional permissions than they actually need 
on the Android platform. Recently, several studies have 
explored that abusing permission request can lead a serious 
risk to Android users (Felt et al., 2011a; Peng et al., 2012; 
Sarma et al., 2012). With the increasing capability of the 
smartphones, the Android applications are becoming more 
and more complicated, and require more dangerous 
permissions than before. We find that only using 
permissions to reveal the malicious Android applications is 
insufficient. 

There are several analytical techniques to detect 
malwares on Android (Shimada et al., 2011; Chakradeo  
et al., 2013). Most analytical techniques can be classified 
into two categories: static and dynamic methods. Each 
detection method has its benefits and drawbacks. Various 
obfuscation techniques can make malware evade static 
analysis, while dynamic analysis techniques cannot 
guarantee a complete coverage over all possible conditions 
to activate app functions of the program. Without a main 
function, Android applications employ an event trigger 
mechanism to invoke their components. It provides a base 
class called intent that is used by event sources to pass event 
information. Through intent messaging mechanism, 
Android can easily realise the late runtime binding between 

components in the same or different applications. As with 
the computer virus, the Android malware often perform 
some type of harmful activity on infected mobiles, such as 
stealing mobile information, sending premium SMS, 
monitoring telephone conversations, and so on. The 
Android malware should request correspond permissions to 
carry out privilege operation and register some broadcast 
receivers to monitor system behaviour. Some researchers 
have revealed that many Android malicious programs, such 
as DroidKunFu (Zhou et al., 2012) and DroidDream 
(Security 2011.3) infect applications and add receiver 
components and service components. For example, a 
malware can start a background service to intercept a short 
message (SMS) (Zhou and Jiang 2012), it must have a 
broadcast to monitor SMS and two permissions to receive 
and send SMS. Through analysing the Malware datasets, we 
can see that malicious applications are not only requesting 
more permissions but also monitor more system events than 
normal applications. 

Many permission-based methods have been proposed to 
identify high risk applications. Enck et al. (2009) propose 
triggering a risk warning if an application requests certain 
permission or combination of two or three permissions. 
Sarma et al. (2012) analyse the risk of Android applications 
according to the permissions that an app requests, the 
category of the app, and what permissions are requested by 
other applications in the same category. If an app requests a 
critical permission that is rarely requested by other 
applications, it will be deemed to be a risky app. In Peng  
et al. (2012), risk scoring and risk ranking are proposed to 
improve risk communication for Android applications. 
Mobile payment is a critical problem in mobile, a secure 
mobile payments framework has been proposed based on 
universal integrated circuit card (Ahamad et al., 2014). 
Magat et al. (1988) show that frequent warnings desensitise 
users, especially if most warnings do not lead to negative 
consequences. Some users are not likely to pay attention to 
install-time permission warning in the Android platform. In 
addition, the current Android warning approach describing 
the risk information of each app is a ‘stand-alone’ function 
that requires too much technical knowledge and time to 
retrieve useful information. In this paper, we employ  
K-means clustering and outlier detection algorithm to 
analyse the risks of Android application permissions. The 
experimental results show that the Android permission 
analysis method is very suitable to the dataset of the Market 
2011 and Market 2012. However, it is under a high false 
positive rate (FPR) in Market 2013. We carefully analyse 
Market 2013, and find that the applications in Market 2013 
are becoming more complicated than the previous  
two market datasets. This causes applications in Market 
2013 to request more and more permissions that make 
permission-based analytical approaches become ineffective. 

To improve the capability of identifying malicious 
applications, we pay attention to the Android system event 
messages. More than 86% malware samples are repackaged 
in malware dataset (Zhou and Jiang, 2012). Most of those 
repackaged legitimate apps include malicious payloads by 
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adding broadcast receiver components and service 
components. Broadcast receiver components are used to 
monitor system events and execute preliminary work, such 
as launch malicious service in background, or intercept 
SMS spread to other components. The service components 
response to perform some malicious operations in 
background, i.e., sending premium SMS, and recording 
users’ phone call. Plenty of non-repackaged malwares are 
also likely to take the similar method to do malicious 
operation. It is necessary to take broadcast receiver as 
feature vector to distinguish malwares from normal Android 
applications. To verify our suspicion, we take libsvm 
(Chang and Lin, 2011) as a tool to distinguish the malware 
applications from normal applications by analysing the 
action list of all intent filters of application broadcast 
receivers. The experimental results demonstrate that our 
suspicion is correct. In summary, the contributions of this 
paper are as follows: 

• We analyse the existing permission-based risk analysis 
methods, and figure out their merits and faults. 

• We analyse the existing permission-based risk analysis 
methods, and figure out their merits and faults. 

• We extend the existing permission-based risk analysis 
approach and add intent as a feature vector. We  
employ the support vector machine (SVM) approach, 
and propose intent-based detection (IBD) and  
intent-permission-based detection (IPBD) methods to 
identify the malicious applications. The experimental 
results show that our methods not only have a highly 
precise ratio to identify malware, but also have a low 
false positive ratio during analysing benign 
applications. 

The rest of this paper organised as follows. We present a 
description of the threat model for the Android platform  
and the current risk warning mechanism in Section 2. 
Section 3 discusses the datasets that we have collected. In 
Section 4, we discuss the merits and faults of existing 
permission-based Android malicious analysis methods. We 
propose two methods that take intent and intent-permission 
as feature vectors respectively to distinguish malwares from 
benign applications. We then present experimental results in 
Section 5. Finally, we discuss the related work in Section 6, 
and conclude the paper in Section 7. 

2 Android overview 

To defend against the malwares in the Android platform 
ecosystem, the Android system provides two major 
methods: sandboxing each application and warning users 
about the permissions that the application is requesting 
(Blasing et al., 2010). However, many studies show that 
those defence mechanisms are insufficient to prevent a user 
from using malicious applications on the Android platform. 
In this paper, we focus on the malicious Android 
applications with a sophisticated application broadcast 
mechanism and coarse-grained permission model. 

2.1 Adversary model 

As the most popular smartphone platform, there is a wide 
array of application markets on Android that contains a 
large number of applications, and a user may install 
applications from varying origins. Users install applications 
with unknown developers or distrust origins may lead to 
serious security threat. The malwares are likely to pretend 
hot applications on Android. Repackaging is a common 
technique that is widely used by hackers on the Android 
platform. Usually, the hacker downloads a hot application, 
decodes the application, modifies permissions declaration, 
adds receiver components and service components. 
Broadcast is part of the Android platform communication 
mechanism. With broadcast receivers, malicious applications 
can monitor the application operations and launch a  
self-defined component. Then he repackages this modified 
application, and distributes it on the app markets. The 
malwares can utilise the dangerous permissions to carry out 
the malicious behaviours (Felt et al., 2011a; Wei et al., 
2012). But recently, the Android applications are becoming 
more and more complicated than before. They need to 
request much more dangerous permissions and make 
permission-based analysis methods become useless. As 
existing malwares on the PC, the malicious applications also 
prefer to implement malicious behaviours on background. 
Because of the event trigger mechanism on Android, the 
malwares must get some events to activate their malicious 
components. The best way to accomplish this target is to use 
the broadcast receiver to trigger malicious component in the 
background. According to our observer, most malwares 
request many dangerous permissions and use broadcast 
receivers to launch malicious components, small part of 
malwares embed malicious operations in activities. In this 
paper, we focus to identify the former, the later need to 
analyse their codes. We expect to find a method which has 
high precise ratio and low error ratio to distinguish different 
applications on Android. 

2.2 Android permission model 

The Android security model differs significantly from the 
PC security model. Android applications treat each other 
with distrust principle. The applications are isolated from 
each other and do not have access to the private data of 
other applications. With suitable permissions, Android 
applications can access personal and sensitive information 
such as contact lists, phone numbers, geographic location, 
and SMS messages on the smartphone. To protect the 
Android system resources from illegal access, Android 
platform classifies the permissions into four protection 
levels. 

• ‘Normal’ permissions protect access to API calls that 
are harmless to the users. Those permissions could be 
granted automatically, without being prompted to the 
users. 

• ‘Dangerous’ permissions control access to dangerous 
API calls. These permissions will be presented to the 
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users when the application is installed and the users 
will be asked to consent to grant them. 

• ‘Signature’ permissions represent the highest privilege. 
These permissions can be obtained only if the request 
application has the device manufacturer’s certificate. 

• ‘SignatureOrSystem’ permissions are specially signed 
permissions, and also have the highest privilege. Only 
the applications that are in the Android system image or 
signed with the same certificate in the system image 
could be granted with the SignatureOrSystem 
permissions. 

According to the protection level definition, third-party 
applications can only use normal and dangerous 
permissions. Only the manufacturer or system preinstalled 
applications can use the four protection level permissions. 

2.3 Android message mechanism 

Growth of smartphone scale has been a prevalent trend of 
the modern mobile market in the world. The user could get 
Android applications from various origins, such as  
Google Play, third-party app markets, forums, SNS and so 
on. This makes it hard to protect smartphones from malware 
applications. Under the Android security model, it provides 
a sandbox mechanism to protect the applications. Each 
application is allocated a unique user ID and a group ID. 
The application can only access its own files by default. 
Sensitive information of the Android applications can be 
protected from other applications by the isolation 
mechanism. To implement inter-application communication, 
Android provides a message passing mechanism where 
intents are used to link applications. The intent is an object 
that contains the component name, action, category, data, 
and other attribution. It can be utilised to both  
inter-application communication and intra-application 
communication. According to the difference of the 
recipient, intent can be classified into two types: explicit 
intent and implicit intent. An explicit intent defines 
component name attribute to identify the intended recipient, 
while an implicit intent leaves it up to the system to 
determine which applications should receive the intent. 

Activities, services, broadcast receivers and content 
providers are Android application components, which are 
logical application building blocks. The explicit intent and 
implicit intent could be exploited to start activities; start, 
stop, and bind services; and broadcast information to 
broadcast receivers. If a component is accidently declared 
public and incorrectly defines its intent filter, the external 
applications can invoke its component in unusual ways or 
inject malicious data into it by faking external intent (Chin 
et al., 2011). There is no main function in Android 
application, instead a main activity as an entry point. The 
Android applications employ event triggers, and different 
actions could trigger different events. A touch event may 
cause a components callback function, while a system event 
will trigger a system broadcast message. For example, an 
event of boot-completed will send a broadcast intent. For 

the Android event trigger mechanism, monitoring system 
event messages can reveal various system actions and 
launch different components. Many malwares are likely to 
receive a broadcast of boot-completed and launch a 
background service without notifying the user. To receive a 
system broadcast, the application should register one or 
more broadcast receivers. A broadcast receiver’s declaration 
decides what broadcast intent will be sent to the broadcast 
receiver. Repackaging a hot application is easier than 
spreading the malicious applications. The hacker can 
perform his purpose by adding one or more components, 
such as broadcast receivers, activities and services. In this 
paper, we carefully analyse the broadcast receiver’s 
declaration on different datasets, and try to find what system 
event messages are malware interested in the Android 
platform. 

3 Datasets 

In this section, we describe the four datasets that we used in 
our study of Android application permissions, and we use 
two of the datasets to analyse the application event 
broadcast receivers. 

3.1 Dataset description 

3.1.1 The datasets of Android permissions 

• Market datasets. We obtained the permission dataset of 
Market 2011 and Market 2012 from the authors (Peng 
et al., 2012). The first dataset, Market 2011, consists of 
157,856 app permissions in February 2011. The second 
dataset, Market 2012, consists of 324,658 app 
permissions in February 2012. Both datasets are 
obtained from the Google Play. In addition, we 
download 3,706 top free applications from Google Play 
in September 2013 randomly. We called this app 
dataset Market 2013. We use four types of antivirus 
tools, 360 internet security, Kaspersky, AVAST and 
Norton, to analyse Market 2013, and get rid of warning 
applications from Market 2013. 

• Malware dataset. We obtained the Malware dataset 
from the authors of Zhou and Jiang (2012), which 
consists of 1,482 malware applications. Next, we 
remove the duplicate applications in the Malware 
dataset and extract the permission descriptions from 
each app. Finally, we get 209 unique malware app 
permissions. 

3.1.2 The datasets of broadcast receivers 

• Market 2013. We collected the action list from 
application broadcast receivers in Market 2013. The 
action string indicates what intent the broadcast can 
receive. 

• Malware dataset. We extract the action list from 
application broadcast receivers in Malware dataset. It 
was mentioned above. 
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Market 2011 and Market 2012 consist of application 
permission data. Therefore, we do not extract the action list 
from these datasets. 

3.2 Data fetching and feature selection 

Market 2011 and Market 2012 are permission datasets that 
have been cleaned by the authors, Peng et al. (2012). We 
extracted the file Menifest.xml from each app in Market 
2013 and Malware dataset. Through parsing the manifest 
file, we got a permission list and an action list for each app. 

We take 26 permissions as feature vectors for our 
research, the same with (Peng et al., 2012; Sarma et al., 
2012). Figure 1 shows the percentage of applications that 
request different numbers of the 26 permissions. From the 
figure, we notice that malicious applications tend to request 
more permissions than those in the market datasets. From 
the Market 2011, Market 2012 and Market 2013, we find a 
tendency that applications are requesting a number of 
permissions on average are increasing. Figure 1 shows that 
the applications in Market 2013 request more permissions 
than before, which make it become hardly to distinguish 
normal applications from malwares. In general, the analysis 
results demonstrate the close link between malware and 
permissions in Android platform where the malicious 
applications are requesting permissions in quite different 
ways compared with normal applications. 

Figure 1 The percentage of applications that request a specific 
number of 26 permissions for different datasets  
(see online version for colours) 

 

Activities, services and broadcast receivers are the three 
main components on Android. Each of them can be taken as 
an entry point to run an app. If the attributes of an intent are 
consistent with a broadcast receiver declaration, it can 
activate the broadcast receiver. The action and data are the 
primary attributes of the intent. In this paper, we focus on 
the action in broadcast receiver, where the Android system 
provides more than 100 category actions. In addition, the 
developers can add new actions for their applications. Since 
each component is an entry point, broadcast receivers can 
be exploited to launch a malicious component. For example, 
a malicious app can launch a service component in the 

background when it receives a boot-completed broadcast to 
record the user operation. To receive the broadcast, an 
application should statically register broadcast receivers 
through the ¡receiver¿ tag in AndroidManifest.xml, or 
dynamically registers broadcast receivers by using the 
function of registerReceiver () in the programming code. 
The latter has a fault that a broadcast receiver could obtain 
the event message only when the app is running. 

Table 1 The relationship of applications, broadcast receivers 
and category actions in Market 2013 and Malware 
datasets 

Datasets Number of 
applications 

Number of 
broadcast 
receivers 

Number of 
category 
actions 

Market 2013 3,706 5,818 2,559 
Malware 1,482 1,786 117 

Table 2 The percentage of action usage in the broadcast 
receiver of Market 2013 and Malware datasets 

Actions Market2013 Malware 

BOOT_COMPLETED 23.69% 89.60% 
SIG_STR 0.00% 40.00% 
BATTERY_CHANGED_ACTION 0.00% 35.48% 
SMS_RECEIVED 2.02% 33.25% 
CONNECTIVITY_CHANGE 5.59% 24.05% 
USER_PRESENT 3.40% 21.98% 
ACTION_POWER_CONNECTED 1.40% 21.98% 
INPUT_METHOD_CHANGED 0.00% 21.98% 
PICK_WIFI_WORK 0.00% 14.84% 
UMS_CONNECTED 0.08% 14.84% 
UMS_DISCONNECTED 0.03% 14.84% 
MEDIA_NOFS 0.00% 14.76% 
PHONE_STATE 2.94% 9.44% 
WAP_PUSH_RECEIVED 0.27% 5.63% 
NEW_OUTGOING_CALL 2.05% 4.52% 
APPWIDGET_UPDATE 33.78% 4.21% 
PACKAGE_ADDED 10.04% 2.86% 
PACKAGE_REMOVED 8.12% 2.62% 
INSTALL_REFERRER 15.00% 2.46% 
PACKAGE_REPLACED 9.12% 2.46% 
MEDIA_MOUNTED 1.27% 0.08% 

With the rapid spread of repacking technique on Android, 
more and more hackers choose to decode hot applications, 
add service and broadcast receivers, and modify the 
manifest file to produce malware. Therefore, we extract the 
declaration of broadcast receiver in manifest file as our 
original analysis data. Table 1 shows the relationship of 
applications, broadcast receivers and category actions in 
Market 2013 and Malware datasets. From Table 1, we 
observe that malicious applications are more interested in 
receiving the system event broadcast than the ones in the 
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market datasets, while the normal applications are more 
likely to receive self-defined broadcasts. Different system 
event broadcast indicates different event happened. Android 
takes intents to transfer event messages. For example, an 
SMS_RECEIVED coupled with a sticky broadcast  
intent indicates that an SMS has been received. The 
SMS_RECEIVED used by 33.25% of the malicious 
applications, but only 2.02% applications of the  
Market 2013. It was suggested that the reason might be the 
malware applications attempt to block the sticky broadcast 
and intercept messages of the user applications. None of 
broadcast receivers obtain the intent with the action of 
INPUT_METHOD_CHANGED in Market 2013, but 
21.98% applications in Malware do. The reason is that some 
malware tries to record users inputs, such as accounts, 
passwords and other private information. 

Table 2 shows the top 21 most used actions in the 
broadcast receivers in the two datasets Market 2013 and 
Malware. Table 2, column 2 shows the percentage of 
actions in the broadcast receiver of the Market 2013, and 
column 3 shows the percentage of the Malware dataset. 
There are 21 actions in Table 2, but we choose 16 actions as 
the feature vectors to identify the different applications. The 
reason is that some actions do not exist in the Market 2013 
dataset. We believe that using these actions will influence 
the results. To avoid over-fitting our model, we do not take 
those actions as the feature vectors to identify malware 
applications. 

3.3 Data discussion 

On Android platform, each application runs with a distinct 
system identifier, i.e., user ID and group ID. It is isolated 
from other applications and the system. The feature of 
privilege-separated operating system is the characteristic of 
Android. In addition, Android provides a fine-grained 
security feature that uses a permission mechanism to 
enforce restrictions on the sensitive system resources. 
Intents are used to activate components, send messages, and 
transfer data. In order to receive some special intent, the 
components not only need to declare suitable intent  
filters, but also must get some specific permission. For 
example, an application can receive a broadcast intent with 
BOOT_COMPLETED only if it has a permission of 
RECEIVE_BOOT_COMPLETED. Those actions must 
accompany the corresponding permission. According to our 
observation, the distribution of those permissions and 
actions are quite consistent in different datasets. Therefore, 
we are confident to believe that the purpose of those 
applications requesting the permissions and declaring the 
same actions for broadcast receiver is that when a malicious 
application received system event message, it can start 
corresponding operations. 

4 Detection methods 

4.1 Permission-based K-means clustering and outlier 
detection 

Since the permissions are very important to analyse  
the malware applications on Android, we take the 
permission-based analysis method as the baseline to identify 
the malicious applications. We analyse Market 2011, 
Market 2012 and Malware datasets, and find two 
phenomena. First, the datasets are unbalanced since the size 
of Market 2011 and Market 2012 is several orders of 
magnitude larger than that of the Malware dataset. Second, 
malicious applications request more permissions than the 
benign applications. Because of the above two features, we 
employ K-means clustering and outlier detection to 
differentiate malwares from benign applications. 

4.1.1 K-means clustering 

We merge Market 2011 and Malware dataset into one 
dataset, and randomly select part of this dataset as a training 
dataset. The dataset is represented as (Xi, Yi), i = 1, 2, ···, n, 
where Xi represents a n-dimensional vector (x1, x2, ···, xn) 
and Yi = –1, 1 represents the corresponding class label with 
1 for benign and –1 for malware. For K-means clustering, 
we set the input parameter k as the number of clusters, and 
partition the training dataset that contains n application 
permissions into k clusters (Hartigan and Wong, 1979).The 
k clusters have two characteristics: the intra cluster 
similarity is high, but the inter cluster similarity is low. The 
mean value of the object similarity in a cluster is defined as 
the cluster similarity, which is the cluster centroid or the 
centre of gravity. We use the weighted Euclidean distance 
to donate the similarity between two applications. It is 
computed as follows: 

2 2
1 1 1( , ) i j n in jnd i j ω x x ω x x= − + + −  (1) 

where the permissions of appi are denoted as (xi1, xi2, ···, xin). 
If appi has the permission j, then xi1 equals 1, otherwise the 
xi1 equals 0. We take the square-error criterion to compute 
the criterion function, which is defined as follows: 

2

1 i

m

i
i o C

S o avg
= ∈

= −∑∑  (2) 

where S is the sum of the square-error for all objects in the 
dataset; o is the point in the space representing a given 
object; and avgi is the mean of the cluster Ci (Han and 
Kamber, 2006). To save the space, we do not list the 
detailed operational flow of the K-means algorithm. 

4.1.2 Outlier detection 

We defined outlier as the malicious app that is inconsistent 
with the most application data. The outliers can be mainly 
classified into two categories: 
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• External outlier: The outlier is an element of the 
application cluster that has few applications, and is 
located far from other application clusters. 

• Internal outlier: If an application locates far from the 
centre of the cluster by comparing the distance of the 
other data in the same cluster, the application is an 
outlier. 

According the concept of outlier, we take outlier factor to 
describe the difference between the outlier and the normal 
application. The outlier factor is defined as follows: 

Definition 4.1: If the dataset D is partitioned into k clusters 
C1, C2, ···, Ck by K-means clustering algorithm, the outlier 
factor of object p is defined as the average of the weighted 
distances between p and cluster centres, denoted as OF(p). 

( )
1

( ) ,
| |

k
i

i
i

C
OF p d p C

D=

= ⋅∑  (3) 

where d(p, Ci) is the distance between application p and the 
centre of cluster i. 

To identify the malwares, we make the simplifying 
assumption that outlier factors are independent and follow a 
normal distribution. Then we can easily identify outliers 
using the following definition. 

Definition 4.2: ∨p ∈ D, where p is an application, and D is 
an Android application permissions dataset, compute the 
outlier factor OF(p) for object p, the average of outlier 
factor Avg_OF and the standard deviation of outlier factor 
Dev_OF. If the application is not a malware, the OF(p) 
must subject to the threshold value that is defined as 
follows: 

( ) _ _ (1 3)OF P Avg OF Dev OF< + ⋅ < <β β  (4) 

where β is a constant. Usually, β = 1 or 1.285 (Lowe, 1999). 
For normal distribution, there is a 68-95-99.7 rule, or the 
empirical rule. According to the permissions distribution in 
Figure 1, the value of β to 1.285 is better. Permissions data 
distribution is approximately normal, then about 80% of the 
data values are within 1.285 standard deviations of the 
mean. The K-means clustering and outlier detection 
algorithm can be summarised as follows (see Algorithm 1). 

4.2 IBD and IPBD 

In Android system, three components, activities, services 
and broadcast receivers, can be the entry points to analyse 
the Android applications. The intent is the message to 
activate these components in an asynchronous way. The 
action string is the primary attribute to an intent object. It is 
composed of a verb that indicates the action to be 
performed. To broadcast intent, the action indicates what 
has happened and what is reported. We use action list to 
distinguish different intents that can be received by 
broadcast receivers. We implement our methods on  
Market 2013 and Malware datasets. To quickly identify the 
malwares, we employ a SVM as a tool to analyse the 

datasets instead of using the outlier detection method since 
the two datasets are very close. 

Algorithm 1 k-means clustering and outlier detection algorithm 

Input: 
Market 2011, Market 2012, Market 2013 and Malware datasets. 
Output: 
Detection rate and warning rate. 
Method: 
1: for k = 1; k ≤ m; k+ + do 
2:  TrainData = DividData(Market2011, 

Maearedatasets); 
3:  C = K – means(TrainData, k); 
4:  for j = 1; k ≤ n; j + + do 

5: 
  

( ) ( )
1

,
| |

k i
j j i

i

C
OF p d p C

D=
= ⋅∑  

   pj ∈ TrainData 
6:  end for 
7:  ( )

1_

n
j

j
OF p

Avg OF
n

==
∑

 

8:  
( )( )

1

1_ _
1

n
i

i
Dev OF OF p Abg OF

n
2

=
= −

− ∑  

9:  Threshold = Avg_OF + β · Dev_OF (1 ≤ β ≤ 2) 
10:  WarnRate2011[k] = Detection(Market2011, C, 

Threshold); 
11:  WarnRate2012[k] = Detection(Market2012, C, 

Threshold); 
12:  WarnRate2013[k] = Detection(Market2013, C, 

Threshold); 
13:  DetectionRate[k] = Detection(Malware, C, 

Threshold);) 
14: end for 

4.2.1 Support vector machines 

SVM (Han and Kamber, 2006) is a popular machine 
learning algorithm that has been widely applied in 
classification, regression and novelty detection. SVM 
approaches use a hyperplane to classify the data into 
different classes. It needs to search for a linear optimal 
separation hyperplane. This problem is that the 
determination of the model parameters corresponds to a 
convex optimisation problem by searching for the maximum 
marginal hyperplane. For a training set of instance-label 
pairs (xi, yi), i = 1, ···, m, where xi ∈ Rn, and y ∈ {–1, 1}m, 
the SVM can be expressed as an optimisation problem: 
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+ >∑  (5) 

Subject to 
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where ξi ≥ 0; the constant C is the penalty parameter, which 
belongs to the error term; the function f maps training vector 
xi into a higher dimensional space. Commonly, the kernel 
function is defined as follows. 

( ) ( ) ( ), T
i j i jK x x f x f x≡  (7) 

There are four common kernel functions: 

• Linear: ( , ) T
i j jiK x x x x≡  

• Polynomial: ( )( , ) , 0dT
i j jiK x x λx x≡ + >α α  

• Radial basis function (RBF): 
2( , ) exp( || || ), 0i j i jK x x x x≡ − − >α α  

• Sigmoid: ( )( , ) tanh , 0T
i j jiK x x x x γ≡ + >α α  

where α, γ and d are kernel parameters. In our experiments, 
we do not get the manifest sets of Market 2011 and  
Market 2012. Therefore, we take Market 2013 and Malware 
datasets to evaluate our methods. 

The SVM algorithm depends on the selected feature 
vectors. From Section 3, we can find that the app in 
different datasets has a quite different interest. The 
malicious applications request more permissions and 
receive more system event messages than normal 
applications. In addition, the selected feature vectors should 
avoid over-fitting prediction model. We take broadcast 
intent and intent-permission as feature vectors respectively, 
and propose IBD and IPBD methods to identify the 
malicious applications. However, there are many attributes 
in an intent object. This will make our feature vectors 
become obscure. Consequently, we only take the action 
attribute as the feature vector for intent since it is the 
primary attribute of intent and has special semantics. We 
extend LibSVM (Chang and Lin, 2011), an SVM package, 
to implement our methods by utilising the SVM variation 
and an RBF kernel. For SVM, it is difficult to find the best 
prediction model. We used n-fold cross-validation to locate 
the optimum SVM parameters. With those parameters we 
can get the optimum prediction model. 

The algorithms for IBD and IPBD can be described as 
follows. 

Step 1 We use the development tools to extract and parse 
the manifest files from the app files, i.e., the apk 
files. After that, we get an action list and a 
permission list from each app. 

Step 2 The action dataset (or action-permission dataset) is 
used to train a multivariate classifier. Our SVM 
takes a RBF as kernel function. 

Step 3 We use LibSVM to implement the data analysis 
function. The software executes the following step. 
1 Train SVM using a subset of dataset (action 

dataset or action-permission dataset). 
2 Compute cross-validation accuracy for Step 1. 

3 Get the best parameters for LibSVM from the 
best cross-validation accuracy. 

4 Compute a prediction model. 
5 Predict datasets using the prediction model. 

Step 4 Compute the true positive rate (TPR) and FPR for 
IBD and IPBD. Calculate detection rate and 
warning rate for Market 2013 and Malware 
datasets. 

5 Evaluation and discussion 

In this section, we performed several experiments to 
illustrate the effectiveness of our malware detection 
methods. In Section 5.1, we present the schemes of three 
experiments. We describe and analyse the results of the 
experiments in Section 5.2. 

5.1 Agenda of experiments 

The following set of experiments was performed to evaluate 
the performance of the malware detection approaches on 
different feature selections. We prepared three kinds of 
datasets for the three experiments respectively. The first 
kind of dataset consists of 26 permissions. The second 
category dataset contains 16 actions. The last one is 
composed of 26 permissions and 16 actions. 

We assume that all applications in the Market 2013 
dataset are benign though a few of them may be malicious 
applications. We randomly select 40% applications of 
Market 2013 and Malware datasets to consist of the training 
set, and the rest is the testing set. 

Experiment 1: The purpose of Experiment 1 is to evaluate 
the permission-based k-means clustering and outlier 
detection. The experiment seeks to exploit the difference in 
Android permissions to distinguish malwares. 

For the training set, we first compute the weights of 
permissions, which will be utilised to compute the 
dissimilarity matrix in K-means clustering algorithm. Then, 
we employ K-means and outlier detection algorithm to 
obtain the cluster centres, outlier factors and outlier 
threshold values. Finally, we can pick up the results of the 
previous step as a criterion to predict other applications. For 
K-means clustering algorithm, we iterate 20 times to find 
the best cluster number. The partial results can show in 
Table 3. 

Experiment 2: The goal of Experiment 2 is to evaluate the 
ability of IBD method to identify malwares. We leverage a 
SVM tool, named LibSVM, to implement our experiment. 
To obtain the best prediction model, we take a ten-fold 
cross-validation to find the optimum SVM parameters in the 
experiment. 

Experiment 3: The purpose of Experiment 3 is to evaluate 
the ability of the IPBD method to see whether it can 
overcome the drawbacks of the permission-based detection 
(PBD) method. The experimental process is the same as to 
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Experiment 2. However, the feature vectors include not only 
permissions, but also broadcast receivers. 

The experimental results of Experiments 2 and 3 can be 
seen in Table 4 and Table 5. 

5.2 Experimental results analysis 

5.2.1 Permission-based malware analysis 

An app can execute privileged operations and access 
sensitive resources only if the corresponding permissions 
were approved when the app was installed. However, many 
applications request more permissions than they actually 
need. One reason is that an under-privileged app may raise 
security exceptions, whereas an app with over-privileges 
has no side effect from the apps point of view. In addition, 
the application developers without sufficient documents 
cannot request suitable permissions. According to our 
analysis, we find that the malicious applications request  
12 permissions on average in Malware dataset, and the 
normal applications in the three Market datasets request 
only two permissions on average. Our analysis on 26 key 
dangerous permissions is very close to Peng et al. (2012) 
and Sarma et al. (2012). These permissions are requested by 
malicious and benign applications. According to our survey 
on Android app permissions and the datasets, we choose  
K-means clustering and outlier detection to identify the 
applications that have a high security risk. 

Table 3 presents the results of using K-means clustering 
and outlier detection to identify malicious applications. 
Column 1 sets the number of clusters. The k-means cluster 
is necessary for users to specify k, the number of clusters, in 
advance can be viewed as a disadvantage. It is difficult to 
decide which K is best parameter before execute the  
K-means cluster. To find an optimum parameter of K-means 
cluster, we set the number of clusters from 1 to 20.  
Column 2 is the outlier detection threshold that was 
discussed in Section 4. As showed in Table 3, the 
experiments show that the parameter of K-means cluster has 

a little impact on outlier detection. Although the market 
dataset consists of different types of application, they have a 
few of difference in requesting permissions. The number of 
malware dataset is far less than market dataset. So the 
cluster number is not critical in the experiment. However, 
the experimental results depend on the threshold value. So 
the threshold value might have to strike a balance between 
detection ratio and warning ratio. From Figure 1, we can 
easily find that nearly 20% in malware dataset do not 
request more permissions than those market datasets. We 
make the simplifying assumption that outlier factors are 
independent and follow a normal distribution. According to 
the empirical rule in normal distribution, we make the value 
of to 1.285. Thus, the detection ratio of 81.34% is 
reasonable. When rapidly increasing the number of 
permissions on average from Market 2011 to Market 2013 
in Figure 1, we can find that the warning ratio also increases 
sharply from Market 2011 to Market 2013 in Table 3.  
There are a number of multi-function applications emerging 
on Android application markets. These applications require 
numerous permissions to implement their multi-functions. 
This leads to false positive ratio increasing sharply on those 
permissions-based analytical approaches. They are useless 
to analyse the recent multi-permission Android applications. 

5.2.2 Intent-based and intent-permission based 
malware analysis 

An intent message must be sent to the component to activate 
a component. The message may come from another 
component or a system event broadcast. If an application 
has a receiver to monitor the system broadcast, it can launch 
one or more components without the users input. Some 
studies show that malwares wish to use the above method to 
launch components. In this paper, we try to use the 
broadcast intent to identify the malicious applications. We 
take the top 16 actions within intent filters of broadcast 
receivers to distinguish the applications in different datasets. 

Table 3 The percentages of applications identified as malicious by permission-based K-means clustering and outlier detection 

Number of clusters  Threshold Malware Market2011 Market2012 Market2013 

β =1 85.65% 10.40% 12.88% 24.28% K = 1 

β =1.285 81.34% 8.18% 10.45% 18.94% 

β =1 85.65% 10.44% 12.92% 24.28% K = 3 

β =1.285 81.34% 8.16% 10.44% 19.94% 

β =1 85.65% 10.40% 12.88% 24.28% K = 5 

β =1.285 81.34% 8.15% 10.43% 18.94% 

β =1 85.65% 10.41% 12.88% 24.28% K = 7 

β =1.285 81.34% 8.15% 10.43% 18.94% 

β =1 85.65% 10.46% 12.94% 24.99% K = 15 

β =1.285 81.34% 8.15% 10.43% 18.94% 

β =1 85.65% 10.43% 12.90% 24.28% K = 20 

β =1.285 81.34% 8.15% 10.43% 18.94% 
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Table 4 The true positive ratio, false positive ratio in 
Experiment 2 and Experiment 3 

Methods True positive ratio False positive ratio 

IBD 85.25% 7.12% 
IPBD 93.07% 1.13% 

Table 5 The percentages of applications identified as high 
risk applications 

Methods Detection rate in 
Malware 

Warning rate in 
Market2013 

IBD 85.24% 7.12% 
IPBD 93.07% 1.13% 
CRCP 88.42% (NA) 
PBD 81% (NA) 

We take the true positive ratio and false positive ratio to 
evaluate the prediction model in Experiments 2 and 3.  
Table 4 shows the experimental results of IBD and IPBD 
methods. From Table 4, we can clearly find that take  
intent-permission as feature vectors can achieve a better 
result. 

We compared our IBD and IPBD methods with CRCP 
(Sarma et al., 2012) and PBD (Huang et al., 2013) through 
Experiments 2 and 3. Table 5 shows the evaluation results 
of using IBD and IPBD, CRCP and PBD to discover 
malicious applications. We define the warning rate is the 
ratio of the applications identified as malicious by our 
methods in market dataset. The detection rate is defined as 
the ratio of the applications detected as malicious by our 
methods in Malware dataset. In the first row in Table 5, we 
see that the detection rate in Malware dataset is 85.24%, and 
the warning rate in Market 2013 is 7.12%. The reason is that 
the applications in the Market 2013 dataset receive fewer 
system broadcasts than the applications in Malware dataset. 
Most of them are more interested in receiving self-defined 
broadcast. The second row of Table 5 demonstrates the 
result of the approach based on intent-permission. Note that 
the IPBD method identifies 93.07% of Malware dataset with 
low warning rate of 1.13% in Market 2013. The CRCP 
(Sarma et al. 2012) identified 88.42% of malicious 
applications (121) and warned 4.9% Market 2011 dataset. 
From Figure 1, we can see there was a clear tendency that 
the applications are requesting a greater number of 
permissions on average in the last three years. Existing 
approaches consider only the numbers and risks of the 
permissions requested by an app. Many of permission-based 
methods are monotonic with the number of permissions. 
This feature of permission-based methods may define 
various benign applications as malwares. The IPBD method 
has a higher detection rate and a lower warning rate than 
CRCP. Huang et al. (2013) used four machine learning 
algorithms to evaluate the performance of PBD of Android 
malwares. They can detect more than 81% of malicious 
samples. 

We use the same Malware dataset that originates from 
Zhou and Jiang (2012). Another advantage of IPBD is that 

the false positive ratio of our approach will not increase 
while increasing in the number of permissions. Therefore, 
we can conclude that the IPBD method can be used as a 
quick and stable filter to identify the malicious applications 
in the applications markets. 

6 Related work 

6.1 Static and dynamic analysis 

With the spread of malware on the Android platform, more 
and more researchers focus on this field (Felt et al., 2011b; 
Zhou et al., 2012). Many existing methods are transplanted 
to analyse the malware on the Android platform. Andromaly 
(Shabtai et al., 2012) is a host-based malicious applications 
detection framework that applies machine learning detector 
to identify malicious applications. However, the authors did 
not take a real malware dataset to verify their detection 
framework. DroidAlarm (Zhongyang et al., 2013) is a static 
analysis tool that can identify potential capability leaks and 
present concrete capability leak paths in Android 
applications. Static analysis is a common technique of 
analysing the Android applications (Schmidt et al., 2009). 
DroidScope (Yan and Yin 2012) is seamlessly reconstructing 
the semantics of the system call and Java. However, it 
transplants the tradition of virtualisation-based malware 
analysis on Android, without considering the programming 
model and permission mechanism. TaintDroid (Enck et al., 
2010) is a system-wide dynamic taint tracking and analysis 
tool, which can track multiple sources of sensitive data. 
RiskRanker (Grace et al., 2012) is a malware detector that 
assesses untrusted applications revealing potential security 
risks. Crowdroid (Burguera et al., 2011) proposes a 
behaviour-based detection framework supporting dynamic 
analysis on Linux Kernel system calls. However, it only 
refines the existing syscall-based analysis techniques that 
are poorly suited for Android. The reason is the fact that it 
could not capture critical interactions between the 
applications and the Android system. 

To use the static analysis approach, the researchers often 
suffer from learning program logic. Moreover, there are 
some techniques against using the static analysis approach, 
such as Java reflection, encrypt, native develop and 
randomising profiles (Shastry et al., 2012; Zhongyang et al., 
2013). Those techniques cause static analysis to become 
very hard to use. Dynamic analysis is likewise a very useful 
analysis technique, whereas there is a gap between the 
system call and the application behaviour (Schmidt et al., 
2008). 

6.2 Permission analysis 

Felt et al. (2011c) analyse the merits and drawbacks 
between existing time-of-use and install-time permission 
system. The latter could have a positive impact on system 
security when it needs to be declared upfront by the 
developer. Nevertheless, it can be optimised. Wei et al. 
(Wei et al., 2012) comprehensively analyse the permission 
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evolution and usage for the entire Android ecosystem. 
Stowaway (Felt et al., 2011a) is an automated testing  
tool on the Android API that can detect application  
over-privilege. However, it cannot deal with Java reflection, 
which is widely used by crackers on Android development. 
Self-organising map (SOM) was utilised by Barrera et al. 
(2010) for empirical analysis of permission-based security 
model on Android. Jeon et al. (2012) introduce a framework 
that applies fine-grained access control for Android 
applications by adding finer-grained permissions. A 
location-based with time-constraint RBAC (MLT-RBAC) is 
proposed to access the wireless associated database system 
for mobile applications (Chen et al., 2012). Apex (Nauman 
et al., 2010) is a policy enforcement framework that allows 
a user imposes permission constraints on the use of 
resources. Peng et al. (2012) and Sarma et al. (2012) use 
permissions requested by an application to identify the risk 
of the applications. WHYPER (Pandita et al., 2013) uses 
natural language processing (NLP) technology to analyse 
the application description and identify the need of 
permissions to the application. However, the semantic gap 
between permissions and resources makes it only identify a 
few permissions. A lightweight possession proof scheme 
has been proposed which is based on chameleon hash 
function (Ren and Liu, 2014). AppAware relies on the set of 
permissions exposed by each application to detect the 
malicious applications. Pscout (Au et al., 2012) is a static 
tool that extracts the permission specification from the 
source code of Android. VetDroid (Zhang et al., 2013) 
proposed a dynamic analysis platform that analyses 
sensitive behaviours based on perspective of permission use 
on Android, but it cannot cover all of user permissions in 
the application. Sang et al. (2014) propose a security 
evaluation of smartphone operating system based on 
international security assessment criteria. 

Many researchers proposed using machine learning 
methods to detect malwares on Android. Although their 
methods achieved a better detection rate, the false positive 
ratio will increase while increasing the number of 
permissions. We find that malicious applications request 
more dangerous permissions and receive  
more system event messages. We extend existing 
permission-based risk analysis methods, add broadcast 
receivers as feature vectors, and propose IPBD method to 
identify the malicious applications. Experimental results 
show that our IPBD method has a high accuracy rate, and 
the false positive ratio will not increase when the number of 
permissions grows. 

7 Conclusions 

We analysed existing permission-based risk analysis 
methods and the characteristics of the malware app 
behaviours on Android. Although there are many 
permission-based approaches to identify malwares, none of 
them gives attention to how the malwares activate their 
malicious components. We introduced the Android system 

event messages as feature vectors, and proposed IBD and 
IPBD methods to identify the risks of applications for 
mobile users. The methods not only analyse the dangerous 
permissions of the applications, but also focus on which 
system broadcast will be received by the applications. This 
makes our methods more difficult to be evaded compared 
with other permission-based methods. We compare our 
methods with other related work on real world datasets to 
test their ability of revealing the malicious applications. 
Experimental results show that the IPBD method is quite 
effective, which has high accuracy in identifying malicious 
applications and a low rate of false positives in practice. 
This means that the proposed method can distinguish benign 
applications which request many dangerous permissions 
from malwares. As a consequence, the IPBD method can be 
regarded as a fast filter to identify malicious applications for 
applications markets. The proposed approaches are based on 
the key insight that most of the malwares samples request 
plenty of dangerous permissions and include malicious 
payloads by adding broadcast receiver components and 
service components. They are not appropriate for the 
malwares that inject their malicious behaviour in the 
activities or multiply applications collusive attack, because 
those malwares need not use broadcast to activate 
components or request many permissions. Next, we take 
broadcast received and service as entry points to analyse the 
malicious behaviours. 
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