
46 Int. J. Embedded Systems, Vol. 8, No. 1, 2016

Copyright © 2016 Inderscience Enterprises Ltd.

Identifying malicious Android apps using
permissions and system events

Hongmu Han, Ruixuan Li* and Xiwu Gu
School of Computer Science and Technology,
Huazhong University of Science and Technology,
Wuhan, 430074, China
Email: Hanhongmu@mail.hust.edu.cn
Email: rxli@mail.hust.edu.cn
Email: Guxiwu@mail.hust.edu.cn
*Corresponding author

Abstract: With the popularity of the Android platform, more and more hackers take the Android
platform as the profitable target. Android provides a risk communication defence mechanism
against malicious applications, which has been demonstrated to be ineffective. It is common to
quickly identify malicious applications by permission-based analysis methods. Recently, those
permission-based methods are becoming useless when more and more applications request
dangerous permissions. The proposed approaches are based on the key insight that the difference
in the components trigger model in malware applications and benign applications. The malwares
are interested in monitoring system broadcast to activate malicious components and request more
permissions. The benign applications are preferable to receive self-define broadcast to activate
their components and ask fewer permissions. Existing permission-based Android malware check
methods can identify nearly 81% malware samples, but they also identify many normal
applications as malware. In this paper, we extend the permission-based approach and employ
machine learning approaches to identify the malicious applications. We use the datasets of the
Market 2011, Market 2012, Market 2013 and Malware to evaluate the proposed methods. The
experimental results illustrate the effectiveness of our proposal.

Keywords: Android; malware; risk; application; embedded system.

Reference to this paper should be made as follows: Han, H., Li, R. and Gu, X. (2016)
‘Identifying malicious Android apps using permissions and system events’, Int. J. Embedded
Systems, Vol. 8, No. 1, pp.46–58.

Biographical notes: Hongmu Han received his BS and MSc in Computer Science from Wuhan
Institude of Technology in 2004 and 2007 respectively. He is currently a PhD student at the
School of Computer Science and Technology, Huazhong University of Science and Technology,
Wuhan, China. His current research interests are mobile security and cloud security.

Ruixuan Li is a Full Professor of School of Computer Science and Technology at Huazhong
University of Science and Technology (HUST), Wuhan, China. His research is focused on cloud
computing, big data management and analysis, distributed system security, information retrieval,
data mining, social network, peer-to-peer computing, data integration, semantic web and
ontology.

Xiwu Gu is a Lecturer of School of Computer Science and Technology at Huazhong University
of Science and Technology (HUST), Wuhan, China. His research interests include distributed
system security, information retrieval and data mining.

This paper is a revised and expanded version of a paper entitled ‘Identifying malicious Android
apps using permissions and system events’ presented at the Chinese Conference on Trusted
Computing and Information Secruity (CTCIS‘2014), Enshi, China, 13–15 September 2014.

1 Introduction

Smartphones are becoming increasingly popular, which are
taking the place of feature phones in recent years. The most
dominant smartphone operating systems are Google
Android, Apple iOS and Windows Phone platforms. There
are many Android app markets on the internet, and the total

number of applications available for users is very huge.
However, the popularity of smartphones and the vast
number of the applications make the Android platform the
most attractive target to hackers. Currently, various forms of
the malware applications exist on the Android platform.
Moreover, many attack techniques, such as app repacking,
denial of service (DoS) attacks (Traynor et al., 2009) and

 Identifying malicious Android apps using permissions and system events 47

privilege escalation attacks (Davi et al., 2011), affect the
applications and system components on Android at runtime
(Rastogi et al., 2013).

Google Play is growing faster than the Apple App store.
However, the application security check in Google Play is
not as good as the Apple App store, which may check each
available application manually by software security experts.
Google provided a security feature, called application
verification service, to protect against malicious Android
applications on November 13, 2012. A study shows that the
application verification service fails to stand up its task,
which misses 85% malwares that are already known to be
malicious (Jiang, 2012). Furthermore, Android allows users
to install third-party applications on the smartphones. It
increases the risk of infecting malwares.

The Android security model is based on application-
oriented mandatory access control and sandboxing (Barrera
et al., 2010; Bartel et al., 2012). Each application assigns a
unique User ID and a set of permissions at the app
installation time, which cannot be changed afterwards
before Android 4.3. There are more than 130 permissions
that govern accessing system resources or communicating
with other applications. The Android permission system
checks corresponding permission assignments at runtime. If
an application has no appropriate permissions, it will not be
allowed to access the privileged resources. Users must
approve the application permission request at the app
installation stage if they want to run the application on their
smartphones. ‘App ops’ is a hidden feature in Android 4.3,
which can control the permissions for the individual app
after the app installed. However, without extra information,
the users find it hard to determine which permission is
harmful since they have rare specific knowledge of Android
permissions. With this vulnerability, many applications
request more additional permissions than they actually need
on the Android platform. Recently, several studies have
explored that abusing permission request can lead a serious
risk to Android users (Felt et al., 2011a; Peng et al., 2012;
Sarma et al., 2012). With the increasing capability of the
smartphones, the Android applications are becoming more
and more complicated, and require more dangerous
permissions than before. We find that only using
permissions to reveal the malicious Android applications is
insufficient.

There are several analytical techniques to detect
malwares on Android (Shimada et al., 2011; Chakradeo
et al., 2013). Most analytical techniques can be classified
into two categories: static and dynamic methods. Each
detection method has its benefits and drawbacks. Various
obfuscation techniques can make malware evade static
analysis, while dynamic analysis techniques cannot
guarantee a complete coverage over all possible conditions
to activate app functions of the program. Without a main
function, Android applications employ an event trigger
mechanism to invoke their components. It provides a base
class called intent that is used by event sources to pass event
information. Through intent messaging mechanism,
Android can easily realise the late runtime binding between

components in the same or different applications. As with
the computer virus, the Android malware often perform
some type of harmful activity on infected mobiles, such as
stealing mobile information, sending premium SMS,
monitoring telephone conversations, and so on. The
Android malware should request correspond permissions to
carry out privilege operation and register some broadcast
receivers to monitor system behaviour. Some researchers
have revealed that many Android malicious programs, such
as DroidKunFu (Zhou et al., 2012) and DroidDream
(Security 2011.3) infect applications and add receiver
components and service components. For example, a
malware can start a background service to intercept a short
message (SMS) (Zhou and Jiang 2012), it must have a
broadcast to monitor SMS and two permissions to receive
and send SMS. Through analysing the Malware datasets, we
can see that malicious applications are not only requesting
more permissions but also monitor more system events than
normal applications.

Many permission-based methods have been proposed to
identify high risk applications. Enck et al. (2009) propose
triggering a risk warning if an application requests certain
permission or combination of two or three permissions.
Sarma et al. (2012) analyse the risk of Android applications
according to the permissions that an app requests, the
category of the app, and what permissions are requested by
other applications in the same category. If an app requests a
critical permission that is rarely requested by other
applications, it will be deemed to be a risky app. In Peng
et al. (2012), risk scoring and risk ranking are proposed to
improve risk communication for Android applications.
Mobile payment is a critical problem in mobile, a secure
mobile payments framework has been proposed based on
universal integrated circuit card (Ahamad et al., 2014).
Magat et al. (1988) show that frequent warnings desensitise
users, especially if most warnings do not lead to negative
consequences. Some users are not likely to pay attention to
install-time permission warning in the Android platform. In
addition, the current Android warning approach describing
the risk information of each app is a ‘stand-alone’ function
that requires too much technical knowledge and time to
retrieve useful information. In this paper, we employ
K-means clustering and outlier detection algorithm to
analyse the risks of Android application permissions. The
experimental results show that the Android permission
analysis method is very suitable to the dataset of the Market
2011 and Market 2012. However, it is under a high false
positive rate (FPR) in Market 2013. We carefully analyse
Market 2013, and find that the applications in Market 2013
are becoming more complicated than the previous
two market datasets. This causes applications in Market
2013 to request more and more permissions that make
permission-based analytical approaches become ineffective.

To improve the capability of identifying malicious
applications, we pay attention to the Android system event
messages. More than 86% malware samples are repackaged
in malware dataset (Zhou and Jiang, 2012). Most of those
repackaged legitimate apps include malicious payloads by

48 H. Han et al.

adding broadcast receiver components and service
components. Broadcast receiver components are used to
monitor system events and execute preliminary work, such
as launch malicious service in background, or intercept
SMS spread to other components. The service components
response to perform some malicious operations in
background, i.e., sending premium SMS, and recording
users’ phone call. Plenty of non-repackaged malwares are
also likely to take the similar method to do malicious
operation. It is necessary to take broadcast receiver as
feature vector to distinguish malwares from normal Android
applications. To verify our suspicion, we take libsvm
(Chang and Lin, 2011) as a tool to distinguish the malware
applications from normal applications by analysing the
action list of all intent filters of application broadcast
receivers. The experimental results demonstrate that our
suspicion is correct. In summary, the contributions of this
paper are as follows:

• We analyse the existing permission-based risk analysis
methods, and figure out their merits and faults.

• We analyse the existing permission-based risk analysis
methods, and figure out their merits and faults.

• We extend the existing permission-based risk analysis
approach and add intent as a feature vector. We
employ the support vector machine (SVM) approach,
and propose intent-based detection (IBD) and
intent-permission-based detection (IPBD) methods to
identify the malicious applications. The experimental
results show that our methods not only have a highly
precise ratio to identify malware, but also have a low
false positive ratio during analysing benign
applications.

The rest of this paper organised as follows. We present a
description of the threat model for the Android platform
and the current risk warning mechanism in Section 2.
Section 3 discusses the datasets that we have collected. In
Section 4, we discuss the merits and faults of existing
permission-based Android malicious analysis methods. We
propose two methods that take intent and intent-permission
as feature vectors respectively to distinguish malwares from
benign applications. We then present experimental results in
Section 5. Finally, we discuss the related work in Section 6,
and conclude the paper in Section 7.

2 Android overview

To defend against the malwares in the Android platform
ecosystem, the Android system provides two major
methods: sandboxing each application and warning users
about the permissions that the application is requesting
(Blasing et al., 2010). However, many studies show that
those defence mechanisms are insufficient to prevent a user
from using malicious applications on the Android platform.
In this paper, we focus on the malicious Android
applications with a sophisticated application broadcast
mechanism and coarse-grained permission model.

2.1 Adversary model

As the most popular smartphone platform, there is a wide
array of application markets on Android that contains a
large number of applications, and a user may install
applications from varying origins. Users install applications
with unknown developers or distrust origins may lead to
serious security threat. The malwares are likely to pretend
hot applications on Android. Repackaging is a common
technique that is widely used by hackers on the Android
platform. Usually, the hacker downloads a hot application,
decodes the application, modifies permissions declaration,
adds receiver components and service components.
Broadcast is part of the Android platform communication
mechanism. With broadcast receivers, malicious applications
can monitor the application operations and launch a
self-defined component. Then he repackages this modified
application, and distributes it on the app markets. The
malwares can utilise the dangerous permissions to carry out
the malicious behaviours (Felt et al., 2011a; Wei et al.,
2012). But recently, the Android applications are becoming
more and more complicated than before. They need to
request much more dangerous permissions and make
permission-based analysis methods become useless. As
existing malwares on the PC, the malicious applications also
prefer to implement malicious behaviours on background.
Because of the event trigger mechanism on Android, the
malwares must get some events to activate their malicious
components. The best way to accomplish this target is to use
the broadcast receiver to trigger malicious component in the
background. According to our observer, most malwares
request many dangerous permissions and use broadcast
receivers to launch malicious components, small part of
malwares embed malicious operations in activities. In this
paper, we focus to identify the former, the later need to
analyse their codes. We expect to find a method which has
high precise ratio and low error ratio to distinguish different
applications on Android.

2.2 Android permission model

The Android security model differs significantly from the
PC security model. Android applications treat each other
with distrust principle. The applications are isolated from
each other and do not have access to the private data of
other applications. With suitable permissions, Android
applications can access personal and sensitive information
such as contact lists, phone numbers, geographic location,
and SMS messages on the smartphone. To protect the
Android system resources from illegal access, Android
platform classifies the permissions into four protection
levels.

• ‘Normal’ permissions protect access to API calls that
are harmless to the users. Those permissions could be
granted automatically, without being prompted to the
users.

• ‘Dangerous’ permissions control access to dangerous
API calls. These permissions will be presented to the

 Identifying malicious Android apps using permissions and system events 49

users when the application is installed and the users
will be asked to consent to grant them.

• ‘Signature’ permissions represent the highest privilege.
These permissions can be obtained only if the request
application has the device manufacturer’s certificate.

• ‘SignatureOrSystem’ permissions are specially signed
permissions, and also have the highest privilege. Only
the applications that are in the Android system image or
signed with the same certificate in the system image
could be granted with the SignatureOrSystem
permissions.

According to the protection level definition, third-party
applications can only use normal and dangerous
permissions. Only the manufacturer or system preinstalled
applications can use the four protection level permissions.

2.3 Android message mechanism

Growth of smartphone scale has been a prevalent trend of
the modern mobile market in the world. The user could get
Android applications from various origins, such as
Google Play, third-party app markets, forums, SNS and so
on. This makes it hard to protect smartphones from malware
applications. Under the Android security model, it provides
a sandbox mechanism to protect the applications. Each
application is allocated a unique user ID and a group ID.
The application can only access its own files by default.
Sensitive information of the Android applications can be
protected from other applications by the isolation
mechanism. To implement inter-application communication,
Android provides a message passing mechanism where
intents are used to link applications. The intent is an object
that contains the component name, action, category, data,
and other attribution. It can be utilised to both
inter-application communication and intra-application
communication. According to the difference of the
recipient, intent can be classified into two types: explicit
intent and implicit intent. An explicit intent defines
component name attribute to identify the intended recipient,
while an implicit intent leaves it up to the system to
determine which applications should receive the intent.

Activities, services, broadcast receivers and content
providers are Android application components, which are
logical application building blocks. The explicit intent and
implicit intent could be exploited to start activities; start,
stop, and bind services; and broadcast information to
broadcast receivers. If a component is accidently declared
public and incorrectly defines its intent filter, the external
applications can invoke its component in unusual ways or
inject malicious data into it by faking external intent (Chin
et al., 2011). There is no main function in Android
application, instead a main activity as an entry point. The
Android applications employ event triggers, and different
actions could trigger different events. A touch event may
cause a components callback function, while a system event
will trigger a system broadcast message. For example, an
event of boot-completed will send a broadcast intent. For

the Android event trigger mechanism, monitoring system
event messages can reveal various system actions and
launch different components. Many malwares are likely to
receive a broadcast of boot-completed and launch a
background service without notifying the user. To receive a
system broadcast, the application should register one or
more broadcast receivers. A broadcast receiver’s declaration
decides what broadcast intent will be sent to the broadcast
receiver. Repackaging a hot application is easier than
spreading the malicious applications. The hacker can
perform his purpose by adding one or more components,
such as broadcast receivers, activities and services. In this
paper, we carefully analyse the broadcast receiver’s
declaration on different datasets, and try to find what system
event messages are malware interested in the Android
platform.

3 Datasets

In this section, we describe the four datasets that we used in
our study of Android application permissions, and we use
two of the datasets to analyse the application event
broadcast receivers.

3.1 Dataset description

3.1.1 The datasets of Android permissions

• Market datasets. We obtained the permission dataset of
Market 2011 and Market 2012 from the authors (Peng
et al., 2012). The first dataset, Market 2011, consists of
157,856 app permissions in February 2011. The second
dataset, Market 2012, consists of 324,658 app
permissions in February 2012. Both datasets are
obtained from the Google Play. In addition, we
download 3,706 top free applications from Google Play
in September 2013 randomly. We called this app
dataset Market 2013. We use four types of antivirus
tools, 360 internet security, Kaspersky, AVAST and
Norton, to analyse Market 2013, and get rid of warning
applications from Market 2013.

• Malware dataset. We obtained the Malware dataset
from the authors of Zhou and Jiang (2012), which
consists of 1,482 malware applications. Next, we
remove the duplicate applications in the Malware
dataset and extract the permission descriptions from
each app. Finally, we get 209 unique malware app
permissions.

3.1.2 The datasets of broadcast receivers

• Market 2013. We collected the action list from
application broadcast receivers in Market 2013. The
action string indicates what intent the broadcast can
receive.

• Malware dataset. We extract the action list from
application broadcast receivers in Malware dataset. It
was mentioned above.

50 H. Han et al.

Market 2011 and Market 2012 consist of application
permission data. Therefore, we do not extract the action list
from these datasets.

3.2 Data fetching and feature selection

Market 2011 and Market 2012 are permission datasets that
have been cleaned by the authors, Peng et al. (2012). We
extracted the file Menifest.xml from each app in Market
2013 and Malware dataset. Through parsing the manifest
file, we got a permission list and an action list for each app.

We take 26 permissions as feature vectors for our
research, the same with (Peng et al., 2012; Sarma et al.,
2012). Figure 1 shows the percentage of applications that
request different numbers of the 26 permissions. From the
figure, we notice that malicious applications tend to request
more permissions than those in the market datasets. From
the Market 2011, Market 2012 and Market 2013, we find a
tendency that applications are requesting a number of
permissions on average are increasing. Figure 1 shows that
the applications in Market 2013 request more permissions
than before, which make it become hardly to distinguish
normal applications from malwares. In general, the analysis
results demonstrate the close link between malware and
permissions in Android platform where the malicious
applications are requesting permissions in quite different
ways compared with normal applications.

Figure 1 The percentage of applications that request a specific
number of 26 permissions for different datasets
(see online version for colours)

Activities, services and broadcast receivers are the three
main components on Android. Each of them can be taken as
an entry point to run an app. If the attributes of an intent are
consistent with a broadcast receiver declaration, it can
activate the broadcast receiver. The action and data are the
primary attributes of the intent. In this paper, we focus on
the action in broadcast receiver, where the Android system
provides more than 100 category actions. In addition, the
developers can add new actions for their applications. Since
each component is an entry point, broadcast receivers can
be exploited to launch a malicious component. For example,
a malicious app can launch a service component in the

background when it receives a boot-completed broadcast to
record the user operation. To receive the broadcast, an
application should statically register broadcast receivers
through the ¡receiver¿ tag in AndroidManifest.xml, or
dynamically registers broadcast receivers by using the
function of registerReceiver () in the programming code.
The latter has a fault that a broadcast receiver could obtain
the event message only when the app is running.

Table 1 The relationship of applications, broadcast receivers
and category actions in Market 2013 and Malware
datasets

Datasets Number of
applications

Number of
broadcast
receivers

Number of
category
actions

Market 2013 3,706 5,818 2,559
Malware 1,482 1,786 117

Table 2 The percentage of action usage in the broadcast
receiver of Market 2013 and Malware datasets

Actions Market2013 Malware

BOOT_COMPLETED 23.69% 89.60%
SIG_STR 0.00% 40.00%
BATTERY_CHANGED_ACTION 0.00% 35.48%
SMS_RECEIVED 2.02% 33.25%
CONNECTIVITY_CHANGE 5.59% 24.05%
USER_PRESENT 3.40% 21.98%
ACTION_POWER_CONNECTED 1.40% 21.98%
INPUT_METHOD_CHANGED 0.00% 21.98%
PICK_WIFI_WORK 0.00% 14.84%
UMS_CONNECTED 0.08% 14.84%
UMS_DISCONNECTED 0.03% 14.84%
MEDIA_NOFS 0.00% 14.76%
PHONE_STATE 2.94% 9.44%
WAP_PUSH_RECEIVED 0.27% 5.63%
NEW_OUTGOING_CALL 2.05% 4.52%
APPWIDGET_UPDATE 33.78% 4.21%
PACKAGE_ADDED 10.04% 2.86%
PACKAGE_REMOVED 8.12% 2.62%
INSTALL_REFERRER 15.00% 2.46%
PACKAGE_REPLACED 9.12% 2.46%
MEDIA_MOUNTED 1.27% 0.08%

With the rapid spread of repacking technique on Android,
more and more hackers choose to decode hot applications,
add service and broadcast receivers, and modify the
manifest file to produce malware. Therefore, we extract the
declaration of broadcast receiver in manifest file as our
original analysis data. Table 1 shows the relationship of
applications, broadcast receivers and category actions in
Market 2013 and Malware datasets. From Table 1, we
observe that malicious applications are more interested in
receiving the system event broadcast than the ones in the

 Identifying malicious Android apps using permissions and system events 51

market datasets, while the normal applications are more
likely to receive self-defined broadcasts. Different system
event broadcast indicates different event happened. Android
takes intents to transfer event messages. For example, an
SMS_RECEIVED coupled with a sticky broadcast
intent indicates that an SMS has been received. The
SMS_RECEIVED used by 33.25% of the malicious
applications, but only 2.02% applications of the
Market 2013. It was suggested that the reason might be the
malware applications attempt to block the sticky broadcast
and intercept messages of the user applications. None of
broadcast receivers obtain the intent with the action of
INPUT_METHOD_CHANGED in Market 2013, but
21.98% applications in Malware do. The reason is that some
malware tries to record users inputs, such as accounts,
passwords and other private information.

Table 2 shows the top 21 most used actions in the
broadcast receivers in the two datasets Market 2013 and
Malware. Table 2, column 2 shows the percentage of
actions in the broadcast receiver of the Market 2013, and
column 3 shows the percentage of the Malware dataset.
There are 21 actions in Table 2, but we choose 16 actions as
the feature vectors to identify the different applications. The
reason is that some actions do not exist in the Market 2013
dataset. We believe that using these actions will influence
the results. To avoid over-fitting our model, we do not take
those actions as the feature vectors to identify malware
applications.

3.3 Data discussion

On Android platform, each application runs with a distinct
system identifier, i.e., user ID and group ID. It is isolated
from other applications and the system. The feature of
privilege-separated operating system is the characteristic of
Android. In addition, Android provides a fine-grained
security feature that uses a permission mechanism to
enforce restrictions on the sensitive system resources.
Intents are used to activate components, send messages, and
transfer data. In order to receive some special intent, the
components not only need to declare suitable intent
filters, but also must get some specific permission. For
example, an application can receive a broadcast intent with
BOOT_COMPLETED only if it has a permission of
RECEIVE_BOOT_COMPLETED. Those actions must
accompany the corresponding permission. According to our
observation, the distribution of those permissions and
actions are quite consistent in different datasets. Therefore,
we are confident to believe that the purpose of those
applications requesting the permissions and declaring the
same actions for broadcast receiver is that when a malicious
application received system event message, it can start
corresponding operations.

4 Detection methods

4.1 Permission-based K-means clustering and outlier
detection

Since the permissions are very important to analyse
the malware applications on Android, we take the
permission-based analysis method as the baseline to identify
the malicious applications. We analyse Market 2011,
Market 2012 and Malware datasets, and find two
phenomena. First, the datasets are unbalanced since the size
of Market 2011 and Market 2012 is several orders of
magnitude larger than that of the Malware dataset. Second,
malicious applications request more permissions than the
benign applications. Because of the above two features, we
employ K-means clustering and outlier detection to
differentiate malwares from benign applications.

4.1.1 K-means clustering

We merge Market 2011 and Malware dataset into one
dataset, and randomly select part of this dataset as a training
dataset. The dataset is represented as (Xi, Yi), i = 1, 2, ···, n,
where Xi represents a n-dimensional vector (x1, x2, ···, xn)
and Yi = –1, 1 represents the corresponding class label with
1 for benign and –1 for malware. For K-means clustering,
we set the input parameter k as the number of clusters, and
partition the training dataset that contains n application
permissions into k clusters (Hartigan and Wong, 1979).The
k clusters have two characteristics: the intra cluster
similarity is high, but the inter cluster similarity is low. The
mean value of the object similarity in a cluster is defined as
the cluster similarity, which is the cluster centroid or the
centre of gravity. We use the weighted Euclidean distance
to donate the similarity between two applications. It is
computed as follows:

2 2
1 1 1(,) i j n in jnd i j ω x x ω x x= − + + − (1)

where the permissions of appi are denoted as (xi1, xi2, ···, xin).
If appi has the permission j, then xi1 equals 1, otherwise the
xi1 equals 0. We take the square-error criterion to compute
the criterion function, which is defined as follows:

2

1 i

m

i
i o C

S o avg
= ∈

= −∑∑ (2)

where S is the sum of the square-error for all objects in the
dataset; o is the point in the space representing a given
object; and avgi is the mean of the cluster Ci (Han and
Kamber, 2006). To save the space, we do not list the
detailed operational flow of the K-means algorithm.

4.1.2 Outlier detection

We defined outlier as the malicious app that is inconsistent
with the most application data. The outliers can be mainly
classified into two categories:

52 H. Han et al.

• External outlier: The outlier is an element of the
application cluster that has few applications, and is
located far from other application clusters.

• Internal outlier: If an application locates far from the
centre of the cluster by comparing the distance of the
other data in the same cluster, the application is an
outlier.

According the concept of outlier, we take outlier factor to
describe the difference between the outlier and the normal
application. The outlier factor is defined as follows:

Definition 4.1: If the dataset D is partitioned into k clusters
C1, C2, ···, Ck by K-means clustering algorithm, the outlier
factor of object p is defined as the average of the weighted
distances between p and cluster centres, denoted as OF(p).

()
1

() ,
| |

k
i

i
i

C
OF p d p C

D=

= ⋅∑ (3)

where d(p, Ci) is the distance between application p and the
centre of cluster i.

To identify the malwares, we make the simplifying
assumption that outlier factors are independent and follow a
normal distribution. Then we can easily identify outliers
using the following definition.

Definition 4.2: ∨p ∈ D, where p is an application, and D is
an Android application permissions dataset, compute the
outlier factor OF(p) for object p, the average of outlier
factor Avg_OF and the standard deviation of outlier factor
Dev_OF. If the application is not a malware, the OF(p)
must subject to the threshold value that is defined as
follows:

() _ _ (1 3)OF P Avg OF Dev OF< + ⋅ < <β β (4)

where β is a constant. Usually, β = 1 or 1.285 (Lowe, 1999).
For normal distribution, there is a 68-95-99.7 rule, or the
empirical rule. According to the permissions distribution in
Figure 1, the value of β to 1.285 is better. Permissions data
distribution is approximately normal, then about 80% of the
data values are within 1.285 standard deviations of the
mean. The K-means clustering and outlier detection
algorithm can be summarised as follows (see Algorithm 1).

4.2 IBD and IPBD

In Android system, three components, activities, services
and broadcast receivers, can be the entry points to analyse
the Android applications. The intent is the message to
activate these components in an asynchronous way. The
action string is the primary attribute to an intent object. It is
composed of a verb that indicates the action to be
performed. To broadcast intent, the action indicates what
has happened and what is reported. We use action list to
distinguish different intents that can be received by
broadcast receivers. We implement our methods on
Market 2013 and Malware datasets. To quickly identify the
malwares, we employ a SVM as a tool to analyse the

datasets instead of using the outlier detection method since
the two datasets are very close.

Algorithm 1 k-means clustering and outlier detection algorithm

Input:
Market 2011, Market 2012, Market 2013 and Malware datasets.
Output:
Detection rate and warning rate.
Method:
1: for k = 1; k ≤ m; k+ + do
2: TrainData = DividData(Market2011,

Maearedatasets);
3: C = K – means(TrainData, k);
4: for j = 1; k ≤ n; j + + do

5:

() ()
1

,
| |

k i
j j i

i

C
OF p d p C

D=
= ⋅∑

 pj ∈ TrainData
6: end for
7: ()

1_

n
j

j
OF p

Avg OF
n

==
∑

8:
()()

1

1_ _
1

n
i

i
Dev OF OF p Abg OF

n
2

=
= −

− ∑

9: Threshold = Avg_OF + β · Dev_OF (1 ≤ β ≤ 2)
10: WarnRate2011[k] = Detection(Market2011, C,

Threshold);
11: WarnRate2012[k] = Detection(Market2012, C,

Threshold);
12: WarnRate2013[k] = Detection(Market2013, C,

Threshold);
13: DetectionRate[k] = Detection(Malware, C,

Threshold);)
14: end for

4.2.1 Support vector machines

SVM (Han and Kamber, 2006) is a popular machine
learning algorithm that has been widely applied in
classification, regression and novelty detection. SVM
approaches use a hyperplane to classify the data into
different classes. It needs to search for a linear optimal
separation hyperplane. This problem is that the
determination of the model parameters corresponds to a
convex optimisation problem by searching for the maximum
marginal hyperplane. For a training set of instance-label
pairs (xi, yi), i = 1, ···, m, where xi ∈ Rn, and y ∈ {–1, 1}m,
the SVM can be expressed as an optimisation problem:

, ,
1

1min 0
2

m
T

i
ω b ξ

i

ω ω C ξ C
=

+ >∑ (5)

Subject to

()() 1T
i iy ω f x b ξ+ ≥ − (6)

 Identifying malicious Android apps using permissions and system events 53

where ξi ≥ 0; the constant C is the penalty parameter, which
belongs to the error term; the function f maps training vector
xi into a higher dimensional space. Commonly, the kernel
function is defined as follows.

() () (), T
i j i jK x x f x f x≡ (7)

There are four common kernel functions:

• Linear: (,) T
i j jiK x x x x≡

• Polynomial: ()(,) , 0dT
i j jiK x x λx x≡ + >α α

• Radial basis function (RBF):
2(,) exp(|| ||), 0i j i jK x x x x≡ − − >α α

• Sigmoid: ()(,) tanh , 0T
i j jiK x x x x γ≡ + >α α

where α, γ and d are kernel parameters. In our experiments,
we do not get the manifest sets of Market 2011 and
Market 2012. Therefore, we take Market 2013 and Malware
datasets to evaluate our methods.

The SVM algorithm depends on the selected feature
vectors. From Section 3, we can find that the app in
different datasets has a quite different interest. The
malicious applications request more permissions and
receive more system event messages than normal
applications. In addition, the selected feature vectors should
avoid over-fitting prediction model. We take broadcast
intent and intent-permission as feature vectors respectively,
and propose IBD and IPBD methods to identify the
malicious applications. However, there are many attributes
in an intent object. This will make our feature vectors
become obscure. Consequently, we only take the action
attribute as the feature vector for intent since it is the
primary attribute of intent and has special semantics. We
extend LibSVM (Chang and Lin, 2011), an SVM package,
to implement our methods by utilising the SVM variation
and an RBF kernel. For SVM, it is difficult to find the best
prediction model. We used n-fold cross-validation to locate
the optimum SVM parameters. With those parameters we
can get the optimum prediction model.

The algorithms for IBD and IPBD can be described as
follows.

Step 1 We use the development tools to extract and parse
the manifest files from the app files, i.e., the apk
files. After that, we get an action list and a
permission list from each app.

Step 2 The action dataset (or action-permission dataset) is
used to train a multivariate classifier. Our SVM
takes a RBF as kernel function.

Step 3 We use LibSVM to implement the data analysis
function. The software executes the following step.
1 Train SVM using a subset of dataset (action

dataset or action-permission dataset).
2 Compute cross-validation accuracy for Step 1.

3 Get the best parameters for LibSVM from the
best cross-validation accuracy.

4 Compute a prediction model.
5 Predict datasets using the prediction model.

Step 4 Compute the true positive rate (TPR) and FPR for
IBD and IPBD. Calculate detection rate and
warning rate for Market 2013 and Malware
datasets.

5 Evaluation and discussion

In this section, we performed several experiments to
illustrate the effectiveness of our malware detection
methods. In Section 5.1, we present the schemes of three
experiments. We describe and analyse the results of the
experiments in Section 5.2.

5.1 Agenda of experiments

The following set of experiments was performed to evaluate
the performance of the malware detection approaches on
different feature selections. We prepared three kinds of
datasets for the three experiments respectively. The first
kind of dataset consists of 26 permissions. The second
category dataset contains 16 actions. The last one is
composed of 26 permissions and 16 actions.

We assume that all applications in the Market 2013
dataset are benign though a few of them may be malicious
applications. We randomly select 40% applications of
Market 2013 and Malware datasets to consist of the training
set, and the rest is the testing set.

Experiment 1: The purpose of Experiment 1 is to evaluate
the permission-based k-means clustering and outlier
detection. The experiment seeks to exploit the difference in
Android permissions to distinguish malwares.

For the training set, we first compute the weights of
permissions, which will be utilised to compute the
dissimilarity matrix in K-means clustering algorithm. Then,
we employ K-means and outlier detection algorithm to
obtain the cluster centres, outlier factors and outlier
threshold values. Finally, we can pick up the results of the
previous step as a criterion to predict other applications. For
K-means clustering algorithm, we iterate 20 times to find
the best cluster number. The partial results can show in
Table 3.

Experiment 2: The goal of Experiment 2 is to evaluate the
ability of IBD method to identify malwares. We leverage a
SVM tool, named LibSVM, to implement our experiment.
To obtain the best prediction model, we take a ten-fold
cross-validation to find the optimum SVM parameters in the
experiment.

Experiment 3: The purpose of Experiment 3 is to evaluate
the ability of the IPBD method to see whether it can
overcome the drawbacks of the permission-based detection
(PBD) method. The experimental process is the same as to

54 H. Han et al.

Experiment 2. However, the feature vectors include not only
permissions, but also broadcast receivers.

The experimental results of Experiments 2 and 3 can be
seen in Table 4 and Table 5.

5.2 Experimental results analysis

5.2.1 Permission-based malware analysis

An app can execute privileged operations and access
sensitive resources only if the corresponding permissions
were approved when the app was installed. However, many
applications request more permissions than they actually
need. One reason is that an under-privileged app may raise
security exceptions, whereas an app with over-privileges
has no side effect from the apps point of view. In addition,
the application developers without sufficient documents
cannot request suitable permissions. According to our
analysis, we find that the malicious applications request
12 permissions on average in Malware dataset, and the
normal applications in the three Market datasets request
only two permissions on average. Our analysis on 26 key
dangerous permissions is very close to Peng et al. (2012)
and Sarma et al. (2012). These permissions are requested by
malicious and benign applications. According to our survey
on Android app permissions and the datasets, we choose
K-means clustering and outlier detection to identify the
applications that have a high security risk.

Table 3 presents the results of using K-means clustering
and outlier detection to identify malicious applications.
Column 1 sets the number of clusters. The k-means cluster
is necessary for users to specify k, the number of clusters, in
advance can be viewed as a disadvantage. It is difficult to
decide which K is best parameter before execute the
K-means cluster. To find an optimum parameter of K-means
cluster, we set the number of clusters from 1 to 20.
Column 2 is the outlier detection threshold that was
discussed in Section 4. As showed in Table 3, the
experiments show that the parameter of K-means cluster has

a little impact on outlier detection. Although the market
dataset consists of different types of application, they have a
few of difference in requesting permissions. The number of
malware dataset is far less than market dataset. So the
cluster number is not critical in the experiment. However,
the experimental results depend on the threshold value. So
the threshold value might have to strike a balance between
detection ratio and warning ratio. From Figure 1, we can
easily find that nearly 20% in malware dataset do not
request more permissions than those market datasets. We
make the simplifying assumption that outlier factors are
independent and follow a normal distribution. According to
the empirical rule in normal distribution, we make the value
of to 1.285. Thus, the detection ratio of 81.34% is
reasonable. When rapidly increasing the number of
permissions on average from Market 2011 to Market 2013
in Figure 1, we can find that the warning ratio also increases
sharply from Market 2011 to Market 2013 in Table 3.
There are a number of multi-function applications emerging
on Android application markets. These applications require
numerous permissions to implement their multi-functions.
This leads to false positive ratio increasing sharply on those
permissions-based analytical approaches. They are useless
to analyse the recent multi-permission Android applications.

5.2.2 Intent-based and intent-permission based
malware analysis

An intent message must be sent to the component to activate
a component. The message may come from another
component or a system event broadcast. If an application
has a receiver to monitor the system broadcast, it can launch
one or more components without the users input. Some
studies show that malwares wish to use the above method to
launch components. In this paper, we try to use the
broadcast intent to identify the malicious applications. We
take the top 16 actions within intent filters of broadcast
receivers to distinguish the applications in different datasets.

Table 3 The percentages of applications identified as malicious by permission-based K-means clustering and outlier detection

Number of clusters Threshold Malware Market2011 Market2012 Market2013

β =1 85.65% 10.40% 12.88% 24.28% K = 1

β =1.285 81.34% 8.18% 10.45% 18.94%

β =1 85.65% 10.44% 12.92% 24.28% K = 3

β =1.285 81.34% 8.16% 10.44% 19.94%

β =1 85.65% 10.40% 12.88% 24.28% K = 5

β =1.285 81.34% 8.15% 10.43% 18.94%

β =1 85.65% 10.41% 12.88% 24.28% K = 7

β =1.285 81.34% 8.15% 10.43% 18.94%

β =1 85.65% 10.46% 12.94% 24.99% K = 15

β =1.285 81.34% 8.15% 10.43% 18.94%

β =1 85.65% 10.43% 12.90% 24.28% K = 20

β =1.285 81.34% 8.15% 10.43% 18.94%

 Identifying malicious Android apps using permissions and system events 55

Table 4 The true positive ratio, false positive ratio in
Experiment 2 and Experiment 3

Methods True positive ratio False positive ratio

IBD 85.25% 7.12%
IPBD 93.07% 1.13%

Table 5 The percentages of applications identified as high
risk applications

Methods Detection rate in
Malware

Warning rate in
Market2013

IBD 85.24% 7.12%
IPBD 93.07% 1.13%
CRCP 88.42% (NA)
PBD 81% (NA)

We take the true positive ratio and false positive ratio to
evaluate the prediction model in Experiments 2 and 3.
Table 4 shows the experimental results of IBD and IPBD
methods. From Table 4, we can clearly find that take
intent-permission as feature vectors can achieve a better
result.

We compared our IBD and IPBD methods with CRCP
(Sarma et al., 2012) and PBD (Huang et al., 2013) through
Experiments 2 and 3. Table 5 shows the evaluation results
of using IBD and IPBD, CRCP and PBD to discover
malicious applications. We define the warning rate is the
ratio of the applications identified as malicious by our
methods in market dataset. The detection rate is defined as
the ratio of the applications detected as malicious by our
methods in Malware dataset. In the first row in Table 5, we
see that the detection rate in Malware dataset is 85.24%, and
the warning rate in Market 2013 is 7.12%. The reason is that
the applications in the Market 2013 dataset receive fewer
system broadcasts than the applications in Malware dataset.
Most of them are more interested in receiving self-defined
broadcast. The second row of Table 5 demonstrates the
result of the approach based on intent-permission. Note that
the IPBD method identifies 93.07% of Malware dataset with
low warning rate of 1.13% in Market 2013. The CRCP
(Sarma et al. 2012) identified 88.42% of malicious
applications (121) and warned 4.9% Market 2011 dataset.
From Figure 1, we can see there was a clear tendency that
the applications are requesting a greater number of
permissions on average in the last three years. Existing
approaches consider only the numbers and risks of the
permissions requested by an app. Many of permission-based
methods are monotonic with the number of permissions.
This feature of permission-based methods may define
various benign applications as malwares. The IPBD method
has a higher detection rate and a lower warning rate than
CRCP. Huang et al. (2013) used four machine learning
algorithms to evaluate the performance of PBD of Android
malwares. They can detect more than 81% of malicious
samples.

We use the same Malware dataset that originates from
Zhou and Jiang (2012). Another advantage of IPBD is that

the false positive ratio of our approach will not increase
while increasing in the number of permissions. Therefore,
we can conclude that the IPBD method can be used as a
quick and stable filter to identify the malicious applications
in the applications markets.

6 Related work

6.1 Static and dynamic analysis

With the spread of malware on the Android platform, more
and more researchers focus on this field (Felt et al., 2011b;
Zhou et al., 2012). Many existing methods are transplanted
to analyse the malware on the Android platform. Andromaly
(Shabtai et al., 2012) is a host-based malicious applications
detection framework that applies machine learning detector
to identify malicious applications. However, the authors did
not take a real malware dataset to verify their detection
framework. DroidAlarm (Zhongyang et al., 2013) is a static
analysis tool that can identify potential capability leaks and
present concrete capability leak paths in Android
applications. Static analysis is a common technique of
analysing the Android applications (Schmidt et al., 2009).
DroidScope (Yan and Yin 2012) is seamlessly reconstructing
the semantics of the system call and Java. However, it
transplants the tradition of virtualisation-based malware
analysis on Android, without considering the programming
model and permission mechanism. TaintDroid (Enck et al.,
2010) is a system-wide dynamic taint tracking and analysis
tool, which can track multiple sources of sensitive data.
RiskRanker (Grace et al., 2012) is a malware detector that
assesses untrusted applications revealing potential security
risks. Crowdroid (Burguera et al., 2011) proposes a
behaviour-based detection framework supporting dynamic
analysis on Linux Kernel system calls. However, it only
refines the existing syscall-based analysis techniques that
are poorly suited for Android. The reason is the fact that it
could not capture critical interactions between the
applications and the Android system.

To use the static analysis approach, the researchers often
suffer from learning program logic. Moreover, there are
some techniques against using the static analysis approach,
such as Java reflection, encrypt, native develop and
randomising profiles (Shastry et al., 2012; Zhongyang et al.,
2013). Those techniques cause static analysis to become
very hard to use. Dynamic analysis is likewise a very useful
analysis technique, whereas there is a gap between the
system call and the application behaviour (Schmidt et al.,
2008).

6.2 Permission analysis

Felt et al. (2011c) analyse the merits and drawbacks
between existing time-of-use and install-time permission
system. The latter could have a positive impact on system
security when it needs to be declared upfront by the
developer. Nevertheless, it can be optimised. Wei et al.
(Wei et al., 2012) comprehensively analyse the permission

56 H. Han et al.

evolution and usage for the entire Android ecosystem.
Stowaway (Felt et al., 2011a) is an automated testing
tool on the Android API that can detect application
over-privilege. However, it cannot deal with Java reflection,
which is widely used by crackers on Android development.
Self-organising map (SOM) was utilised by Barrera et al.
(2010) for empirical analysis of permission-based security
model on Android. Jeon et al. (2012) introduce a framework
that applies fine-grained access control for Android
applications by adding finer-grained permissions. A
location-based with time-constraint RBAC (MLT-RBAC) is
proposed to access the wireless associated database system
for mobile applications (Chen et al., 2012). Apex (Nauman
et al., 2010) is a policy enforcement framework that allows
a user imposes permission constraints on the use of
resources. Peng et al. (2012) and Sarma et al. (2012) use
permissions requested by an application to identify the risk
of the applications. WHYPER (Pandita et al., 2013) uses
natural language processing (NLP) technology to analyse
the application description and identify the need of
permissions to the application. However, the semantic gap
between permissions and resources makes it only identify a
few permissions. A lightweight possession proof scheme
has been proposed which is based on chameleon hash
function (Ren and Liu, 2014). AppAware relies on the set of
permissions exposed by each application to detect the
malicious applications. Pscout (Au et al., 2012) is a static
tool that extracts the permission specification from the
source code of Android. VetDroid (Zhang et al., 2013)
proposed a dynamic analysis platform that analyses
sensitive behaviours based on perspective of permission use
on Android, but it cannot cover all of user permissions in
the application. Sang et al. (2014) propose a security
evaluation of smartphone operating system based on
international security assessment criteria.

Many researchers proposed using machine learning
methods to detect malwares on Android. Although their
methods achieved a better detection rate, the false positive
ratio will increase while increasing the number of
permissions. We find that malicious applications request
more dangerous permissions and receive
more system event messages. We extend existing
permission-based risk analysis methods, add broadcast
receivers as feature vectors, and propose IPBD method to
identify the malicious applications. Experimental results
show that our IPBD method has a high accuracy rate, and
the false positive ratio will not increase when the number of
permissions grows.

7 Conclusions

We analysed existing permission-based risk analysis
methods and the characteristics of the malware app
behaviours on Android. Although there are many
permission-based approaches to identify malwares, none of
them gives attention to how the malwares activate their
malicious components. We introduced the Android system

event messages as feature vectors, and proposed IBD and
IPBD methods to identify the risks of applications for
mobile users. The methods not only analyse the dangerous
permissions of the applications, but also focus on which
system broadcast will be received by the applications. This
makes our methods more difficult to be evaded compared
with other permission-based methods. We compare our
methods with other related work on real world datasets to
test their ability of revealing the malicious applications.
Experimental results show that the IPBD method is quite
effective, which has high accuracy in identifying malicious
applications and a low rate of false positives in practice.
This means that the proposed method can distinguish benign
applications which request many dangerous permissions
from malwares. As a consequence, the IPBD method can be
regarded as a fast filter to identify malicious applications for
applications markets. The proposed approaches are based on
the key insight that most of the malwares samples request
plenty of dangerous permissions and include malicious
payloads by adding broadcast receiver components and
service components. They are not appropriate for the
malwares that inject their malicious behaviour in the
activities or multiply applications collusive attack, because
those malwares need not use broadcast to activate
components or request many permissions. Next, we take
broadcast received and service as entry points to analyse the
malicious behaviours.

Acknowledgements

This research is partially supported by National Natural
Science Foundation of China under grants 61173170,
61300222, 61433006, and U1401258, Innovation Fund of
Huazhong University of Science and Technology under
grants 2013QN120, 2012TS052 and 2012TS053.

References

Ahamad, S.S., Sastry, V. and Udgata, S.K. (2014) ‘Secure mobile
payment framework based on UICC with formal verification’,
International Journal of Computational Science and
Engineering, Vol. 9, No. 4, pp.355–370.

Au, K.W.Y., Zhou, Y.F., Huang, Z. and Lie, D. (2012) ‘PScout:
analyzing the Android permission specification’, Proceedings
of the 2012 ACM Conference on Computer and
Communications Security, ACM.

Barrera, D., Kayacik, H.G., van Oorschot, P.C. and Somayaji, A.
(2010) ‘A methodology for empirical analysis of
permission-based security models and its application to
android’, Proceedings of the 17th ACM Conference on
Computer and Communications Security, ACM.

Bartel, A., Klein, J., Le Traon, Y. and Monperrus, M. (2012)
‘Automatically securing permission-based software by
reducing the attack surface: an application to Android’,
Proceedings of the 27th IEEE/ACM International Conference
on Automated Software Engineering, ACM.

 Identifying malicious Android apps using permissions and system events 57

Blasing, T., Batyuk, L., Schmidt, A-D., Camtepe, S.A. and
Albayrak, S. (2010) ‘An android application sandbox system
for suspicious software detection’, 2010 5th International
Conference on Malicious and Unwanted Software
(MALWARE), IEEE.

Burguera, I., Zurutuza, U. and Nadjm-Tehrani, S. (2011)
‘Crowdroid: behavior-based malware detection system for
android’, Proceedings of the 1st ACM Workshop on Security
and Privacy in Smartphones and Mobile Devices, ACM.

Chakradeo, S., Reaves, B., Traynor, P. and Enck, W. (2013)
‘Mast: triage for market-scale mobile malware analysis’,
Proceedings of the Sixth ACM Conference on Security and
Privacy in Wireless and Mobile Networks, ACM.

Chang, C-C. and Lin, C-J. (2011) ‘LIBSVM: a library for support
vector machines’, ACM Transactions on Intelligent Systems
and Technology (TIST), Vol. 2, No. 3, p.27.

Chen, H-C., Huang, Y-F., Lee, S-H., Chen, C-T. and Hung, H-L.
(2012) ‘A mobile location-based with time-constraint RBAC
associated database management model’, International
Journal of Computer Systems Science & Engineering,
Vol. 27, No. 6, pp.431–440.

Chin, E., Felt, A.P., Greenwood, K. and Wagner, D. (2011)
‘Analyzing inter-application communication in Android’,
Proceedings of the 9th International Conference on Mobile
Systems, Applications, and Services, ACM.

Davi, L., Dmitrienko, A., Sadeghi, A-R. and Winandy, M. (2011)
‘Privilege escalation attacks on android’, Information
Security, Springer, pp.346–360.

Enck, W., Gilbert, P., Chun, B-G., Cox, L.P., Jung, J.,
McDaniel, P. and Sheth, A. (2010) ‘TaintDroid: an
information-flow tracking system for realtime privacy
monitoring on smartphones’, OSDI.

Enck, W., Ongtang, M. and McDaniel, P. (2009) ‘On lightweight
mobile phone application certification’, Proceedings of the
16th ACM Conference on Computer and Communications
Security, ACM.

Felt, A.P., Chin, E., Hanna, S., Song, D. and Wagner, D. (2011a)
‘Android permissions demystified’, Proceedings of the 18th
ACM Conference on Computer and Communications
Security, ACM.

Felt, A.P., Finifter, M., Chin, E., Hanna, S. and Wagner, D.
(2011b) ‘A survey of mobile malware in the wild’,
Proceedings of the 1st ACM Workshop on Security and
Privacy in Smartphones and Mobile Devices, ACM.

Felt, A.P., Greenwood, K. and Wagner, D. (2011c) ‘The
effectiveness of application permissions’, Proceedings of the
2nd USENIX Conference on Web Application Development,
USENIX Association.

Grace, M., Zhou, Y., Zhang, Q., Zou, S. and Jiang, X. (2012)
‘Riskranker: scalable and accurate zero-day android malware
detection’, Proceedings of the 10th International Conference
on Mobile Systems, Applications, and Services, ACM.

Han, J. and Kamber, M. (2006) Data Mining: Concepts and
Techniques, 2nd ed., Elsevier Science & Technology,
Burlington, MA, USA.

Hartigan, J.A. and Wong, M.A. (1979) ‘Algorithm AS 136: a
k-means clustering algorithm’, Journal of the Royal
Statistical Society. Series C (Applied Statistics), Vol. 28,
No. 1, pp.100–108.

Huang, C-Y., Tsai, Y-T. and Hsu, C-H. (2013) ‘Performance
evaluation on permission-based detection for Android
malware’, in J-S. Pan, C-N. Yang and C-C. Lin (Eds.):
Advances in Intelligent Systems and Applications – Volume 2,
Vol. 21, pp.111–120, Springer Berlin Heidelberg.

Jeon, J., Micinski, K.K., Vaughan, J.A., Fogel, A., Reddy, N.,
Foster, J.S. and Millstein, T. (2012) ‘Dr. Android and
Mr. Hide: fine-grained permissions in android applications’,
Proceedings of the second ACM Workshop on Security and
Privacy in Smartphones and Mobile Devices, ACM.

Jiang, X. (2012) An Evaluation of the Application (‘App’)
Verification Service in Android 4.2, North Carolina State
University.

Lowe, D.G. (1999) ‘Object recognition from local scale-invariant
features’, The Proceedings of the Seventh IEEE International
Conference on Computer Vision, 1999, IEEE.

Magat, W.A., Viscusi, W.K. and Huber, J. (1988) ‘Consumer
processing of hazard warning information’, Journal of Risk
and Uncertainty, Vol. 1, No. 2, pp.201–232.

Nauman, M., Khan, S. and Zhang, X. (2010) ‘Apex: extending
android permission model and enforcement with user-defined
runtime constraints’, Proceedings of the 5th ACM Symposium
on Information, Computer and Communications Security,
ACM.

Pandita, R., Xiao, X., Yang, W., Enck, W. and Xie, T. (2013)
‘WHYPER: towards automating risk assessment of mobile
applications’, Proceedings of the 22nd USENIX Security
Symposium, Washington DC, USA.

Peng, H., Gates, C., Sarma, B., Li, N., Qi, Y., Potharaju, R.,
Nita-Rotaru, C. and Molloy, I. (2012) ‘Using probabilistic
generative models for ranking risks of Android apps’,
Proceedings of the 2012 ACM Conference on Computer and
Communications Security, ACM.

Rastogi, V., Chen, Y. and Jiang, X. (2013) ‘DroidChameleon:
evaluating Android anti-malware against transformation
attacks’, Proceedings of the 8th ACM SIGSAC Symposium on
Information, Computer and Communications Security, ACM.

Ren, W. and Liu, Y. (2014) ‘A lightweight possession proof
scheme for outsourced files in mobile cloud computing based
on chameleon hash function’, International Journal of
Computational Science and Engineering, Vol. 9, No. 4,
pp.339–346.

Sang, J., Hong, D., Zhang, B., Xiang, H. and Fu, L. (2014)
‘Protection profile for the smartphone operating system’,
International Journal of Embedded Systems, Vol. 6, No. 1,
pp.28–37.

Sarma, B.P., Li, N., Gates, C., Potharaju, R., Nita-Rotaru, C. and
Molloy, I. (2012) ‘Android permissions: a perspective
combining risks and benefits’, Proceedings of the 17th ACM
symposium on Access Control Models and Technologies,
ACM.

Schmidt, A-D., Bye, R., Schmidt, H-G., Clausen, J., Kiraz, O.,
Yuksel, K.A., Camtepe, S.A. and Albayrak, S. (2009)
‘Static analysis of executables for collaborative malware
detection on android’, IEEE International Conference on
Communications, 2009, ICC’09, IEEE.

Schmidt, A-D., Schmidt, H-G., Clausen, J., Yuksel, K.A.,
Kiraz, O., Camtepe, A. and Albayrak, S. (2008) ‘Enhancing
security of linux-based android devices’, in Proceedings of
15th International Linux Kongress, Lehmann.

58 H. Han et al.

Security, L.M. (2011.3) Lookout Mobile Security Technical Tear
Down – droiddream [online] https://blog.lookout.com/wp-
content/uploads/2011/03/COMPLETE-DroidDream-
Technical-Tear-DownLookout-Mobile-Security.pdf
(accessed 20 February 2014).

Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C. and Weiss, Y.
(2012) ‘Andromaly: a behavioral malware detection
framework for android devices’, Journal of Intelligent
Information Systems, Vol. 38, No. 1, pp.161–190.

Shastry, A., Kantarcioglu, M., Zhou, Y. and Thuraisingham, B.
(2012) ‘Randomizing smartphone malware profiles against
statistical mining techniques’, Data and Applications Security
and Privacy XXVI, Springer, pp.239–254.

Shimada, H., Courbot, A., Kinebuchi, Y. and Nakajima, T. (2011)
‘A software infrastructure for dependable embedded
systems’, International Journal of Computer Systems Science
& Engineering, Vol. 26, No. 6, pp.491–503.

Traynor, P., Lin, M., Ongtang, M., Rao, V., Jaeger, T.,
McDaniel, P. and La Porta, T. (2009) ‘On cellular botnets:
measuring the impact of malicious devices on a cellular
network core’, Proceedings of the 16th ACM Conference on
Computer and Communications Security, ACM.

Wei, X., Gomez, L., Neamtiu, I. and Faloutsos, M. (2012)
‘Permission evolution in the Android ecosystem’,
Proceedings of the 28th Annual Computer Security
Applications Conference, ACM.

Yan, L.K. and Yin, H. (2012) ‘Droidscope: seamlessly
reconstructing the OS and Dalvik semantic views for dynamic
android malware analysis’, Proceedings of the 21st USENIX
Security Symposium.

Zhang, Y., Yang, M., Xu, B., Yang, Z., Gu, G., Ning, P.,
Wang, X.S. and Zang, B. (2013) ‘Vetting undesirable
behaviors in android apps with permission use analysis’,
Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security, ACM.

Zhongyang, Y., Xin, Z., Mao, B. and Xie, L. (2013) ‘DroidAlarm:
an all-sided static analysis tool for Android
privilege-escalation malware’, Proceedings of the 8th ACM
SIGSAC Symposium on Information, Computer and
Communications Security, ACM.

Zhou, W., Zhou, Y., Jiang, X. and Ning, P. (2012) ‘Detecting
repackaged smartphone applications in third-party android
marketplaces’, Proceedings of the second ACM conference on
Data and Application Security and Privacy, ACM.

Zhou, Y. and Jiang, X. (2012) ‘Dissecting android malware:
characterization and evolution’, 2012 IEEE Symposium on
Security and Privacy (SP), IEEE.

