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Abstract. This paper presents a framework for large-scale computa-
tions for problems that feature coarse-grained parallelization. The com-
ponents of this framework are based on Java, which allows for a wide
variety of platforms and components, and peer-to-peer communication
is provided through the JXTA protocols, which allow for a dynamic and
decentralized organization of computational resources.

1 Introduction

Parallel computation has been an essential component of scientific computing
for decades. Traditionally, when one thinks of parallelization, one often envisions
fine-grained parallelization, which requires substantial inter-node communication
utilizing protocols such as MPI[1, 2] or PVM[3]. Recently, however, there is an
increasing demand for efficient mechanisms of carrying out computations which
exhibit coarse-grained parallelism. Examples of this class of problems include
throughput computations, where numerous similar but independent tasks are
performed to solve a large problem, or any solution which relies on ensemble
averages, where a simulation is run under a variety of initial conditions which
are then combined to form the result. This paper presents a framework for these
types of computations.

The idea of achieving parallelization through performing many independent
tasks is not new. One realization of this method is the Seti@Home[4] project,
where data from astronomical measurements is farmed out to many PCs for pro-
cessing, and when completed returned to a centralized server and postprocessed.
While this example does achieve coarse-grained parallelism, there are several
issues which need to be addressed when building a generalized framework for
distributed computing. In particular, the ability to run a variety of simulations,
and using decentralized methods of job submission and result retrieval. Further-
more, other desirable aspects which are addressed in this framework include (1)
a dynamic grid, where nodes are added and removed during the lifetime of the
jobs, (2) redundancy, such that the dynamic nature of the grid does not affect the
results, (3) organization of computational resources into groups, such that inter-
node communications does not occur in a one-to-all or all-to-all mode, thereby
limiting the scalability of the system, and (4) heterogeneity, where a wide variety
of computational platforms are able to participate.



The framework in this paper utilized the JXTA[5] open peer-to-peer [6] com-
munication protocols, which allow for the dynamic aspect (point 1 above) of
the grid through peer discovery, in addition to the scalability aspect (point 3)
through the use of peer groups. Heterogeneity (point 4) is achieved through
Java’s ability to run on various platforms. The decentralized aspect of the frame-
work in addition to redundancy are discussed in the following sections.

Project JXTA was started at Sun Microsystems in 2001. JXTA defines a set of
protocols that can be implemented by peers to communicate and collaborate with
other peers implementing the JXTA protocols. It tries to standardize messaging
systems, specifically peer-to-peer systems, by defining protocols, rather than
implementations. Currently Java and C implementations of the JXTA protocols
are available.

In JXTA, every peer is a identified by an ID, unique over time and space.
Peer groups are user defined collections of entities (peers) who share a common
interest, (in the least case, an interest for being a part of a peer group). Peer
groups are also identified by unique IDs. Peers can belong to multiple peer
groups, can discover other entities (peers and peer groups) dynamically and can
also publish themselves so that other peers can discover them. Three kinds of
communication are supported in JXTA. The first kind is called unicast pipe and
is similar to UDP as it is unreliable. The second type is called secure pipe. The
secure pipe creates a secure tunnel between the sender and the receiver, thus
creating a secure, reliable transport. The third type is the broadcast pipe. When
using the broadcast pipe, the message is broadcast to all the peers in the peer
group.

2 Framework peer groups and roles

In creating a framework for distributed computation, one needs to address the
issue of reliability and scalability at the outset of defining the architecture. Be-
cause we are restricting the type of end-user applications run on the framework
to those that are embarrassingly parallel, a high degree of scalability is built
into the system. The issue of efficiency then turns to the administration and
coordination of tasks and resources. One advantage of building the framework
utilizing the JXTA protocols is that the concept of peer groups can be leveraged.
By utilizing peer groups as a fundamental building block of the framework, one
is able to group resources according to functionality, in the process building
redundancy and restricting communication messages to relevant peers.

The distributed computing framework contains the following peer groups:
the monitor group, the worker group, the task dispatcher group, and the reposi-
tory group. The monitor group is a top-level group which coordinates the overall
activity of the framework, including handling requests for peers to join the frame-
work and their subsequent assignment of the node to peer groups, and high-level
aspects of the job submission process. The worker group is the peer group re-
sponsible for performing the computations of a particular job, while the task



dispatcher group distributes individual tasks to workers. The repository group
serves as a cache for code and data.

A single node can belong to several peer groups in the framework, and likewise
there can be many instances of each peer group within the framework. These
interconnectivity and redundancy features are critical in handling the dynamic
nature of the environment, where resources are added and removed on a regular
basis. In the following sections we discuss the interconnectivity of various peer
groups in detail.

2.1 Code repository and the job submission process

There are two parts to the submission of a job: the code used by the worker
nodes which is common for all tasks within the global job, and the data used
by the code which generally varies for each task within a global job. The data
segment of the job submission can range from being simple parameters which
vary from task to task, to large data sets required for computations. As with
other aspects of this framework, the storage of the two elements for a job are
distributed throughout the network in a decentralized fashion. The management
of these components falls under the repository peer group, and example of which
is given in Figure 1.
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Fig. 1. Example of a Code Repository that contains three codes, each having its own
job repository. The Monte-Carlo job repository has currently three jobs, each composed
of a different number of tasks.



The interaction of the code repository group with the rest of the framework
is through the task dispatcher group. Upon receiving the job submission, the
task dispatcher polls the repository to determine the status of the code within
the code repository. If the repository is current, then the code is retrieved, and
otherwise uploaded and stored in the code repository. For each job, a job repos-
itory is created, which is a tree containing a repository for tasks within the job,
which are submitted by the end-user.

2.2 Distribution of tasks amongst workers

In this section we discuss the interaction of the task dispatcher and the worker
groups. Within each worker group there is one task dispatcher. Idle workers
regularly poll the task dispatcher relaying information regarding resources avail-
able, including codes the worker has cached. Based on this information, the task
dispatcher polls the repository for tasks to be performed on available codes, or
for codes to be downloaded to the workers. Upon distribution of code and tasks,
the worker performs the task and returns the result to the task dispatcher. It is
important to note that the task dispatcher does not keep track of which workers
are performing which tasks.

No handshaking is being performed between the worker and the task dis-
patcher. Both are working in such a manner that lost messages do not affect
the final completion of a job. As such, a worker could become inaccessible dur-
ing execution, which would not affect the overall completion of a job. The task
dispatcher updates the repository with information about task completion, and
redundant tasks are performed to account for node failure.

2.3 Result retrieval

Once a job has completed, that is, all the tasks in its task repository have
completed, the tasks are ready to be sent back to the job submitter. However,
the task dispatcher does not keep track of the job submitters. It is therefore up
to the job submitter to initiate the result retrieval process.

The job submitter has a method that polls the task dispatcher to see whether
the job that it submitted has completed. Each job consists of a task repository,
which has a unique ID. This ID is sent to the job submitter when the task
repository is created, and is used to request the results.

The task dispatcher relays this request to the repository which returns with
the tasks if the job has completed. These results are sent back to the job sub-
mitter, and the job submitter retrieves the array of tasks and then postprocesses
them.

3 Reliability

Reliability is an important requirement for distributed computing. Simulations
can take days to complete and an outage can result in days of lost time. If the



job is amenable to partitioning, it can benefit from the reliability features our
framework implements. One of them is illustrated in Figure 2. If there was only
a single task dispatcher and it was interrupted, all the results from the tasks
executed by the workers who sent their results to that task dispatcher would
be lost. Therefore, it is necessary to have redundant task dispatchers in task
dispatcher peer groups. With two task dispatchers keeping each other up to date
with the latest results they have received, the information is not lost if one of
them incurs an outage.
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Fig. 2. Worker node assumes the role of task dispatcher when the latter is disrupted.

A new worker joining a work group does not contact a particular task dis-
patcher, but the task dispatcher peer group. A task dispatcher replies to the
incoming message. The question of which task dispatcher replies is discussed in
the following section on scalability. The worker then establishes communication
with the task dispatcher. This communication establishment protocol is illus-
trated by the worker at the top of Figure 2. In this model, if a task dispatcher
fails to respond to a worker, the worker backs out a level and contacts the task
dispatcher peer group again. At this time, a different task dispatcher responds
to his request. This protocol in case of a task dispatcher failure is illustrated by
the worker at the bottom of Figure 2.

Task dispatchers in a peer group communicate by sending each other mes-
sages at regular time intervals. This regular message exchange will be referred as
the task dispatcher heartbeat. When task dispatchers receive new results from
a worker, they send them to the other task dispatcher to keep a redundant copy
of these results. In order to reduce the communication between task dispatchers,
the implementation of the model could be such that they update each other with
newest results only during heartbeats.

A few comments should be made to the sequence of events that happen
if a member of a given task dispatcher peer group is interrupted. As soon as



the other task dispatcher in the same peer group realizes that his redundant
colleague is missing, it will invite a worker requesting a task to execute the
task dispatcher code in his peer group, transforming a regular worker into a
task dispatcher. This role interchange is simple to implement, because both the
worker and task dispatcher codes implement a common interface, making them
equally schedulable in this model. This role interchange is illustrated in Figure
2 by the worker on the left side of the figure.

The number of task dispatchers in the task dispatcher peer group does not
necessarily have to be limited to two. We could easily have triple or higher
redundancy in the task dispatcher peer group. Also, because the communication
protocols used do not limit us to working with peers in a small network, one
can easily take advantage of the higher reliability offered by having redundant
task dispatchers in various geographical locations. By having redundant task
dispatchers in different states for instance, a power outage in one state would
not result in any loss of information.

4 Scalability

As workers are added to a work group, the communication bandwidth between
workers and task dispatchers may become a bottleneck. To prevent this, another
role is introduced, the monitor. The main function of the monitor is to intercept
requests from peers which do not belong to any peer group yet. Monitors act
as middle men between work groups and joining peers. Job submitters who
want to submit a job and workers who want to join a work group to work
on a task will need to contact a monitor. Monitors free task dispatchers from
direct communication with the outside world. Work groups communicate with
their monitor and do not see the rest of the communication outside of the work
group.

A monitor can have several work groups to monitor and can redirect requests
from peers from the outside to any of the work groups it monitors. This redi-
rection will depend on the workload of these subgroups. Just as we have task
dispatcher peer groups, there are also monitor peer groups, with several monitors
updating each other within a monitor peer group to provide redundancy.

With the addition of monitors, the way jobs are submitted to the framework
is now slightly different. Job submitters make requests to the monitor peer group.
Monitors within that peer group redirect these requests to a work group. The
choice of this group depends on what code these work groups are already working
on, on their workloads, etc. The work group replies directly to the job submitter,
who establishes a working relationship with the work group.

The redirection by the top monitor group happens only once at the initial
request by the job submitter to submit a job. Afterwards, messages are sent
directly from the job submitter to the correct work group. A similar protocol is
followed when a new worker wants to join the framework.

The role of the monitor is not only to redirect newcomers to the right work
groups, but also to monitor the work groups, because it is up to the monitor to



decide to which work group a job should be submitted. It will therefore keep track
of work group loads, codes, and information about the loss of task dispatchers
in a work group.

Monitors keep each other up to date with the status of the work groups under
them with the monitor group heartbeat. Monitors can also request a worker to
become a monitor in case of a monitor failure.
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Fig. 3. Communications between monitor and other nodes.

As mentioned earlier, if too many peers are present in a work group, the
communication bandwidth within that group may become a bottleneck. This
would also happen if too many work groups are associated with the same monitor
peer group. Therefore, the model also enables one to have a hierarchy of monitor
peer groups, with each monitor peer group monitoring a combination of work
groups and monitor groups. Whenever a monitor group becomes overloaded, it
takes the decision of splitting off a separate monitor group, which takes some of
the load off the original monitor group. The mechanism used to submit a job (job
submitter) or to request a task (worker) from the computing grid is illustrated
in Figure 3. The job submitter or worker contacts the top level monitor group.
Based on the information passed with the message, one of the peers in the top
monitor group decides which subgroup to hand on the request to, it forwards the
request to the chosen subgroup. If this subgroup is a monitor group, the message
is forwarded until it reaches a work group. Once the message is in a work group,
a task dispatcher in the work group sends a reply to the job submitter/worker.
This message contains the peer ID of the task dispatcher to contact, the ID of
the task dispatcher peer group, as well as the peer group IDs of the intermediate
peer groups involved in passing down the message. The job submitter/worker at
this stage has a point of contact in a new work group. If it fails to contact the
task dispatcher, it will successively contact the task dispatcher peer group, its



parent, grand-parent, etc. until it succeeds in contacting someone in the chain.
The last level of the hierarchy is the top level monitor group.

Because all the new peers joining the computing grid have to go through
the top level monitor group, the communication at that level might become a
bottleneck in the model. Numerous solutions exist to this problem. An easy one
to implement is the following. When a new peer contacts the top-level monitor
group, all the monitors within this peer group receive the message. Each monitor
in the monitor peer group has a subset of requests to which it replies. These sub-
sets do not overlap and put together compose the entire possible set of requests
that exist. Based on a request feature, a single monitor takes the request of the
new peer and redirects it to a subgroup.
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Fig. 4. Scalable network of work groups and associated monitor groups.

One should comment on the way monitors decide whether they will reply
to a given request. This decision is made based on the request itself coming
from the new peer. There is no need for communication between monitors to
decide who will reply. For example, if you had two monitors in the monitor
group, one monitor could reply to requests from peers having odd peer IDs,
while the other monitor would reply to requests from peers having even peer
IDs. The decision does not require any communication between the monitors
and is therefore beneficial for our model. It reduces the communication needs
and increases the bandwidth for other messages. One could also base this decision
on the geographical proximity of the requestor to the monitor.

5 Example of usage of Peer-to-peer distributing
computing framework

This section illustrates how to submit a job to the framework. The example used
is trivial but it illustrates the features required for the framework to work.



In this example, we compute the sum of all the integers between 1 and 1000.
The calculation can easily be split into several tasks. If we decide to divide
the work into 10 parts. The first task would be the addition of all the integers
between 1 and 100, the second task the addition of all the integers between 101
and 200, etc.

5.1 Programs for execution kernel and for job submission

To use the framework to do this calculation on several machines, we first need
to write the core of the calculation in a code. In this case AddNumbers.java:

import java.io.Serializable;

public class AddNumbers implements Runnable, Serializable

{

private int result, first, last;

public AddNumbers(int first, int last)

{

result = 0;

this.first = first;

this.last = last;

};

public void run()

{

for (int i=first; i<=last; i++)

result +=i;

};

public int getResult()

{

return result;

};

};

Fig. 5. Sample computational program AddNumbers.java

The AddNumbers constructor is used to initialize the data, it takes argu-
ments which must contain sufficient information for the code to run (in this case
the first and last indexes of the numbers to be added). An AddNumbers class
instance differentiates itself from another instance only through the way they
are constructed. The run() method is the core of the calculation. Since it will
be invoked remotely on a machine unknown to the job submitter, it should not
contain anything requiring user interaction or display any graphics. Once the



run() method has been executed, the AddNumbers object contains the result of
the calculation (in this case, the sum of all the integers from first to last).

We will now go over some details in this code that are implementation spe-
cific. First the AddNumbers class needs to implement Serializable and Runnable.
The first interface is necessary for the class instances to be sent using IO streams
to the peers executing them. The second interface needs to be implemented for
AddNumbers to be able to be passed to a RemoteThread object. RemoteThread
described in the following section is used by the job submitter to submit a job
to the computing grid. It is an implementation specific class and is similar to a
regular java.lang.Thread, but it runs on a remote peer.

This job is split into ten tasks. Each task is identified by the first and last
indexes of the integers to be added. These two integers are passed to the con-
structor of AddNumbers, and stored in two private variables. At this point, each
task is well defined and ready to run.

Subsequently, a RemoteThread is created and two arguments are passed to
it, the array of AddNumbers, and the directory containing the classes that are
necessary to run the AddNumbers code. The bytecode transfer to remote peers
uses byte arrays and XML messages. Files containing bytecode necessary to run a
particular code are read by the RemoteThread class and put into XML messages.
These messages are then sent to remote peers, which store the bytecode locally.

After the start() method is called, we check with the repository whether the
AddNumbers code has already been submitted. If it has not been submitted,
we send all the class files from the directory AddNumbers to the repository,
which will create a job repository for this particular code. If it has already been
submitted (for example by someone who had previously computed the sum of
all the integers between 2000 and 4000), we do not create a new job repository
for this code, but use the existing one. Afterwards, the array of individual tasks
is sent to the repository. A task repository is created in for these tasks. Each of
these task repositories has a unique ID that can be used by the job submitter
to retrieve his results in the future.

Every 10 seconds, we check whether the tasks have completed. The join()
method returns only when all the tasks have completed, after what it is possible
to retrieve the results of the individual tasks using the getRunnable() method
of RemoteThread.

The remove() method removes all tasks belonging to this job from the task
repository. If this method is not called, the memory requirements of the reposi-
tory increase in time.

The quit() methods should be called before exiting the application to quit
cleanly.

5.2 RemoteThread Class

The RemoteThread class is similar to the java.lang.Thread class and can be used
by the application writer to submit an application to be run in parallel to the
framework. It has the following methods:



public class exampleApp

{

public exampleApp()

{

AddNumbers [] tasks = prepareTasks(10); // Split the job

into 10

RemoteThread remoteTh = new RemoteThread(tasks, "AddNumbers");

remoteTh.start();

remoteTh.join(10000);

Runnable [] run = (Runnable []) remoteTh.getRunnable();

if (run != null)

postprocess(run);

removeTh.remove();

remoteTh.quit();

System.exit(0);

}

private AddNumbers [] prepareTasks(int numberOfJobs)

{

/* Create the instances of AddNumbers class for each task */

AddNumbers [] tasks = new AddNumbers [numberOfJobs];

for (int i=0; i<numberOfJobs; i++)

tasks [i] = new AddNumbers(1+(i*1000)/numberOfJobs,

((i+1)*1000)/numberOfJobs);

return tasks;

}

private void postprocess(Runnable [] run)

{

int sum = 0;

for (int i = 0; i<run.length; i++)

sum += ((AddNumbers) run [i]).getResult();

System.out.println("sum = " + sum);

}

public static void main (String args[])

{

exampleApp app = new exampleApp();

}

}

Fig. 6. Example of pre- and post-processing for the application submitted to a dis-
tributed environment.



– public RemoteThread(java.lang.Runnable [] tasks, String codeDir): An in-
stance of the RemoteThread class is created, the arguments are a set of tasks
implementing the Runnable interface, and the name of the directory where
the classes containing the code to be passed to the other peers is located.
When the start() method is called, the classes and then the tasks are sent
to the task dispatcher.

– public void start(): This method is similar to the start() method of java.lang.Thread.
It submits the code and the tasks to the framework.

– public void join(int timeInterval): This method is similar to the join() method
in the java.lang.Thread class, except that a time interval has to be specified
to determine how often the RemoteThread should check whether the job
submitted has completed.

– public java.lang.Runnable[] getRunnable(): Once the job has completed, this
method allows one to retrieve the results of the computations.

– void remove(): This method removes the java.lang.Runnable objects con-
taining the results from the code repository.

– void quit(): This method cleans up the RemoteThread and should be used
before quitting the user application.

6 Conclusion

The presented model has all the features required for scalable, robust, efficient
and dynamic grid computing. The peer-to-peer design of the grid limits commu-
nication to small peer groups that really require it. This enables the computing
grid to scale to a very large numbers of peers. As pointed out earlier, the fact
that task dispatchers can be redundant across large geographical locations, node
outages in a single location will not affect the overall computational process. It
also takes advantage of all the nodes willing to join the grid computing effort
and is very efficient by this dynamicity. The RemoteThread class provides a set
of APIs to harness the power of the framework by the application developers.
One of the interesting features that has not been highlighted but which is a con-
sequence of the features of this distributed computing model is the non-locality
of the grid in the network. The grid could be composed of a few peers located in
California today, and migrate to Japan tomorrow as more peers join the comput-
ing grid. This migration is directly dictated by the number of peer nodes joining
the framework. Adding features to existing distributed computing models, this
model pushes the boundary of grid computing to the global network.
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