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SUMMARY Separation-of-Duty (SoD) is a fundamental se-
curity principle for prevention of fraud and errors in computer
security. It has been studied extensively in traditional access
control models. However, the research of SoD policy in the re-
cently proposed usage control (UCON) model has not been well
studied. This paper formulates and studies the fundamental
problem of static enforcement of static SoD (SSoD) policies in
the context of UCONA, a sub-model of UCON only consider-
ing authorizations. Firstly, we define a set-based specification
of SSoD policies, and the safety checking problem for SSoD in
UCONA. Secondly, we study the problem of determining whether
an SSoD policy is enforceable. Thirdly, we show that it is in-
tractable (coNP-complete) to direct statically enforce SSoD poli-
cies in UCONA, while checking whether a UCONA state satisfies
a set of static mutually exclusive attribute (SMEA) constraints
is efficient, which provides a justification for using SMEA con-
straints to enforce SSoD policies. Finally, we introduce a indirect
static enforcement for SSoD policies in UCONA. We show how
to generate the least restrictive SMEA constraints for enforcing
SSoD policies in UCONA, by using the attribute-level SSoD re-
quirement as an intermediate step. The results are fundamental
to understanding SSoD policies in UCON.
key words: Separation-of-Duty, usage control, constraint, static
mutually exclusive attribute.

1. Introduction

Separation-of-Duty (SoD) is widely considered to be a
fundamental principle for prevention of fraud and er-
rors in computer security, and widely applied in busi-
ness, industry, and government [1], [2]. The concept of
SoD has long existed before the information age, some-
times under the name “the two-man rule”. One of the
best known requirements for SoD is embodied in the
Chinese Wall model [3], in which access to documents
that could result in a commercial conflict of interest is
strictly controlled. The literature has long recognized
that there are two major types of SoD policies: dynamic
SoD (DSoD) and static SoD (SSoD)[4]. A simple way
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to distinguish between DSoD and SSoD is to consider
the time at which the permission are authorized. DSoD
typically constrains the activation of permissions at run
time. SSoD typically constrains the assignment of per-
missions to users. DSoD is a weaker form of SSoD [5],
since, for example, it may allow a user to be authorized
for both permissions p1 and p2, but not allow the user
to hold these permissions in a single session. SSoD is an
important variation of SoD, an SSoD policy states that
in order to have all permissions necessary to complete
a sensitive task, the cooperation of at least a certain
number of users is required. It provides the capability
to address potential conflict-of-interest issues when a
permission is assigned to a user.

SoD has been studied extensively in the traditional
access control models; it has been recognized that “one
of role-based access control (RBAC)’s great advantages
is that SoD rules can be implemented in a natural and
efficient way” [6]. Recently, usage control [7] was pro-
posed as a general and comprehensive model to extend
the underlying mechanism of traditional access control
models. UCON is a new access control model that cov-
ers traditional access controls such as mandatory, dis-
cretionary, role-based access control, and other models
like digital rights management and other modern access
controls [8]. It has been considered as the next genera-
tion access control model with distinguishing properties
of decision continuity and attribute mutability. How-
ever, as a related and fundamental problem, the re-
search of SoD policy in usage control (UCON) model
[7] has not been fully explored. Since authorization
decisions in UCON are not only checked and made be-
fore the access, but may be repeatedly checked during
the access and may be revoked if some policies are not
satisfied, according to the changes of the subject or
object attributes, or environmental conditions, the en-
forcement of SoD policies in UCON is of course more
difficult than in RBAC.

This paper focuses on the SSoD policy in UCONA

[7], [8], a sub-model of UCON only considering autho-
rizations for the following reasons. Firstly, SSoD poli-
cies can be enforced statically, which ensures that each
access control state that can be reached is safe with re-
spect to the SSoD policies for the task. Furthermore,
static enforcement can be achieved either directly or
indirectly. In direct static enforcement, before making
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changes to the access control state, one checks that the
resulting state is safe and makes the change only when
it is safe. In indirect static enforcement, one speci-
fies constraints so that any access control state sat-
isfying the constraints is safe and thus only need to
check whether a resulting state satisfies the constraints
during state changes. We argue that the study of in-
direct static enforcement of SSoD policies should be
given highest priority than the direct static one, since
we show that direct static enforcement is computation-
ally intractable (coNP-complete). On the other hand, it
is efficient to check whether an UCONA state satisfies a
set of static mutually exclusive attribute (SMEA) con-
straints, which provides a justification for using SMEA
constraints to enforce SSoD policies. Secondly, The
family of UCONABC models for UCON, which integrate
Authorizations (UCONA), oBligations (UCONB), and
Conditions (UCONC). In UCONA, the control decision
of an access is determined by one or more predicates
built from the attributes of the subject and the object.
Since an authorization decision is determined by sub-
ject’s and object’s attributes, and these attribute values
can be updated as side-effects of the authorization, the
study of SSoD policies in UCONA is more pressing than
that in UCONB and UCONC. In authorization models,
usage control decisions can be checked and determined
before or during a usage process, which are called preA
(pre-authorizations) and onA (ongoing authorizations),
respectively. For UCONonA models, the system state
changes nondeterministically, depending on concurrent
accesses and reasons for attribute updates. We leave
the research of the SSoD policies in UCONonA models
for future work. For the sake of simplicity in this paper
we refer UCONA as UCONpreA models. The research of
indirect static enforcement of SSoD policies in UCONA

is important for emerging applications as usage control
scenarios, and it can also increase UCON’s strengths in
that it enables the use of constraints to support SSoD
policies.

Our contributions in this paper are as follows:

• We define a set-based specification of SSoD policies
and the safety checking problem for SSoD policies
in the context of UCONA systems.

• We study the problem of determining whether an
SSoD policy is enforceable, and show that whether
an SSoD policy is enforceable is determined by the
number of ancestor attribute-sets for it.

• We show that direct statically enforcing SSoD
policies in UCONA is intractable (coNP-complete)
in general, which means that there exist difficult
problem instances that take exponential time in
the worst case.

• We show that checking whether a UCONA state
satisfies a set of static mutually exclusive attribute
(SMEA) constraints is efficient, which provides a
justification for using SMEA constraints to enforce

SSoD policies. Therefore, we generate SMEA con-
straints that are as accurate as possible for indirect
static enforcing SSoD policies in UCONA, by using
the attribute-level SSoD requirement as an inter-
mediate step.

The rest of this paper is organized as follows. Sec-
tion 2 contains a brief introduction of UCONA. Section
3 gives the specification of SSoD policies, as well as the
safety checking problem for SSoD policies in the context
of UCONA models. Section 4 studies the problems of
determining whether an SSoD policy is enforceable in
the context of UCONA. Section 5 studies the computa-
tional complexities for direct statically enforcing SSoD
policies in UCONA. Section 6 shows how to use SMEA
constraints for indirect statically enforcing SSoD poli-
cies. Section 7 describes related works, and section 8
concludes this paper and presents further directions of
research.

2. A Brief Introduction of UCONA

A UCON system consists of six components: sub-
jects and their attributes, objects and their attributes,
generic rights, authorizations, obligations, and con-
ditions, where authorizations, obligations and condi-
tions are the components of usage control decisions [7],
[8]. Where authorizations are predicates based on sub-
ject/object attributes, obligations are actions that are
performed by subjects or system, and conditions are
system and environmental restrictions. The most im-
portant properties that distinguish UCON from tradi-
tional access control models are decision continuity and
attribute mutability. Where decision continuity compo-
nents are checked and enforced in the before-usage and
ongoing-usage phases, and attribute mutability means
that one ore more subject or object attribute values can
be updated as the results of an access.

UCONA is a sub-model of UCON only considering
authorizations. The authorization decision in UCONA

is determined by subject/object attributes and system
attributes, and these attribute values can be updated
as side-effects of authorization. A permission is a triple
(s, o, r), where s, o, r are a subject, object, and right,
respectively. The permission enables the access of a
subject s to an object o in a particular mode r, which
is enabled by an authorization rule in an authorization
policy. A UCONA state is specified by attribute-value
assignments for each object in the system. In each sys-
tem state, a predicate is evaluated by using the values
of the attributes in the state. A formal representation
of a UCONA system can be defined with the basic com-
ponents that we have introduced. The UCONA scheme
affects the system in two ways. First, a set of satisfied
pre-authorization policies can authorize a permission so
that a subject can access an object with this particu-
lar permission. Second, the predicates may authorize
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the system to move to a new state with a sequence of
actions. In this way, the state of a UCONA system
focuses on the interactions between these two aspects.
An assignment of an attribute maps its attribute name
to a value in its domain, denoted as o.a = v, where
v ∈ dom(a) ∪ null, dom(a) denotes the domain of the
attribute a. The set of assignments for all objects’ at-
tributes collectively constitute a state of the system.

Definition 1. A UCONA state ε is a pair (O, θ), where
O is a set of objects, and θ : O×ATT → dom(ATT )∪
{null} is a function that assigns a value or null to each
attribute of each subject or object.

A subject is a unit of access control in UCONA,
and a user may have multiple subjects (or sessions) with
different permissions active at the same time. We as-
sume that there is only one access generated from a sin-
gle user. A UCONA state ε = (S, θ) directly determines
subject’s attributes, and indirectly determines the sub-
ject’s permissions. We use ATT (s) and ATT (o) to de-
note the subject’s attributes and object’s attributes.
UCONA utilizes ATT (s), ATT (o), and permission for
usage decision making. We do not consider the inter-
nal structure of permission. In this way, UCONA only
examines usage requests using ATT (s) and permission
then decides if the access request is allowed or denied.

3. The Specification of SSoD Policies

SSoD is not a complicated concept; it is easy to mo-
tivate and understand intuitively. Several definitions
of SSoD have been given in the literature, research pa-
pers on SSoD policies in computer systems regularly
describe constraints that are defined in terms of users
and roles. We now give a formal basis for this principle
in computer security systems. The definition of SSoD
policies are based on the following requirements.

(1)An SSoD policy must be a high-level require-
ment. Clark et al.[9] identified an SSoD policy as a
high-level mechanism that is “at the heart of fraud and
error control”. It states a high-level requirement about
the task without the need to refer to individual steps
in the task. Consequently, an SSoD policy states an
overall requirement that must be satisfied by any set
of users that together complete a task, rather than re-
stricting which users are allowed to carry out the in-
dividual steps. As the specification abstracts away de-
tails of how a task is implemented, an SSoD policy is
likely to be closer to organizational policy guidelines;
in other words, the SSoD policies must be task-level
policies rather than step-level policies.

(2)An SSoD policy must be expressed in terms of
restrictions on permissions. In the literature, SSoD is
usually defined not in terms of permissions. As in the
ANSI RBAC standard [10], static mutually exclusive
role (SMER) constraints are called SSoD constraints,

and dynamic mutually exclusive role (DMER) con-
straints are called DSoD constraints. The distinction
between SSoD policies as objectives and SMER con-
straints as a mechanism is not clearly. One danger is
that the SMER or DMER constraints may be specified
without a clear specification of what objectives they
intend to meet; consequently, it is unclear whether the
higher-level objectives are met by the constraints or
not. Another danger is that even though when SMER
or DMER constraints are specified, and there exists a
clear understanding of what SoD policies are desired,
when the assignment of permissions to roles changes,
the SMER constraints may no longer be adequate for
enforcing the desired SSoD policies [11]. However, these
two dangers will be relieved while SSoD policies are ex-
pressed in terms of restrictions on permissions.

(3)An SSoD policy must capture restrictions on
the user set involved in the task. In general, the user
set is the set of all possible users in the system; but
in practice, the number of users in any organization
is bounded. This makes SSoD policies harder to be
satisfied in a given access control state [12]. Therefore,
the definition of SSoD policies in this paper considers
the total number of available users as a limiting factor.

An SSoD policy states that in order to have all
permissions necessary to complete a sensitive task, the
cooperation of at least a certain number of users is re-
quired. We now formally define SSoD policies as fol-
lows.

Definition 2. An SSoD policy is expressed as

ssod 〈{p1, · · · , pm}, {u1, · · · , un}, k〉

where each pi is a permission needed to complete a
sensitive task, each uj is a user authorized to com-
plete the task, m, n, and k are integers, such that
2 ≤ k ≤ min(m,n), min returns the smaller value of
the two.

Intuitively, the policy ssod 〈P,U, k〉 means that
there should not exist a set of fewer than k users from
{u1, · · · , un} required to perform a task that together
have all the permissions in {p1, · · · , pm}. Obviously,
the SSoD policy precludes any group of users from pos-
sessing too many permissions, but a UCONA state di-
rectly determines subject’s attributes, and indirectly
determines the subject’s permissions. Due to their op-
posite objectives, an SSoD policy can not be satisfied
by a given UCONA state.

Definition 3. We say that a UCONA state ε is safe
with respect to an SSoD policy e = ssod 〈P,U, k〉, which
we denote by safee(ε), if and only if in state ε no k-1
users from U together have all the permissions in P .
Formally,

∀{u1, · · · , uk−1} ⊆ U
(⋃k−1

i=1 auth pε(u
′

i)
)
6⊇ P
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where auth pε[u] = {p|allowed(u, p) ⇒ preA(ATT (u), p)},
ATT (u) denotes the user’s attributes, allowed(u, p) in-
dicates that user u is assigned the permission p, and
preA(A, p) is the pre-authorizations in UCONA, any
user covers all the attributes in the attribute set A, it
can be assigned the permission p.

Definition 4. Given a UCONA state ε and an SSoD
policy e, determine whether safee(ε) is true is called
the safety checking problem for SSoD (SC-SSoD).

Observe that if no k-1 users together have all the
permissions in an SSoD policy, then no set of fewer
than k users together have all the permissions. If the
security administrator wants to specify an SSoD pol-
icy, he should first identify a sensitive task, and then
identify the permissions in P that are needed to carry
out a sensitive task, the constraint set of user set U ,
and determine the minimum number k of collaborating
users should be authorized to complete it. A UCONA

state ε is safe with respect to a set E of SSoD policies,
which we denote by safeE(ε), if and only if ε is safe
with respect to every SSoD policy e ∈ E.

4. Enforceability of SSoD Policies

In practice, not all SSoD policies are enforceable in a
UCONA system. For example, given an SSoD policy e
and a UCONA state ε, e may be incompatible with ε
that some attributes in the system useless. To address
this, we use a running example to illustrate the concept
of enforceability as follows, and present a necessary and
sufficient condition for determining whether an SSoD
policy is enforceable in a UCONA state.

Example 1. Suppose that each user in an or-
ganization has the same set of attribute names
ATT = {Role, Identity,Digital money}, where the
Role’s value is a system role name, dom(Role) =
{engineer, programmer, supervisor}. The Identity
denotes the identity of a user, dom(Identity) =
{student, teacher}, the Digital money is a numerical
value, dom(Digital money) = {v|0 ≤ v ≤ 1000}. As-
sume that the system administrator declares that each
user requesting the permission p1 or p2 must comply
with the following preA predicates:

• allowed(u,p1)⇒ preA(ATT(u),p1), where ATT(u)=
{{engineer,student},{50}}

• allowed(u,p2)⇒ preA(ATT(u),p2), where ATT(u)=
{{programmer,student},{150}}

For any user u, if u has the engineer role, he is
a student, and his Digital money is no less than
50, then p1 can be assigned to u. Similarly, if u
has the programmer role, he is a student, and his
Digital money is no less than 150, then p2 can be as-
signed to u.

We assume that the permissions in {p1, p2} are

needed to carry out a sensitive task and a policy
guarantees that at least two users are needed to
successfully complete it. One may declare p1 and
p2 to be mutually exclusive that no user from the
user set {Alice,Bob, Carl} is allowed to be a mem-
ber of both, he may specify an SSoD policy e =
ssod 〈{p1, p2}, {Alice,Bob, Carl}, 2〉. Let’s suppose
that ATT (Alice) = {{supervisor, student}, {200}},
where supervisor is a senior role to both engineer
and programmer. Obviously, safee(ε) is false, be-
cause Alice can be a member of both p1 and
p2 in that ATT (Alice) according to allowed(u, p1)
and allowed(u, p2). In order to address this, one
may forbid Alice from having the attribute-set
{{supervisor, student}, {200}}. This is undesirable; if
an attribute value cannot be assigned to a user, then
it should not be included in the domain of the user at-
tribute. This is the key problem in this section. For
this, we need to determine whether a given SSoD pol-
icy can be enforced in a UCONA state, which is based
on the comparison of attribute sets.

Definition 5. (I,M) is an attribute set, where I is
the set of immutable attributes, M is the set of mutable
attributes. We say that (Ij ,Mj) is senior to (Ii,Mi),
denoted by (Ii,Mi) � (Ij ,Mj), if and only if for each
attribute a ∈ Ii, there exists an attribute a′ ∈ Ij such
that a′ is senior to a, and denoted by a � a′; and for
each attribute b ∈ Mi there exists an attribute b′ ∈ Mj

such that b′ is greater than b, and denoted by b � b′.

Mutable attributes are modified by the system
automatically that do not require any administrative
actions for update. Immutable attributes cannot be
changed by the subject’s activity, only administra-
tive actions can change it. Obviously, � associates
the user attribute-sets be reflexive, transitive, and
anti-symmetric, thus these associations form a com-
bined hierarchy that is partially ordered. Continuing
from Example 1, consider the following set of user
attributes: (I1,M1) = {{engineer, student}, {50}},
(I2,M2) = {{programmer, student}, {150}}, and
(I3,M3) = {{supervisor, student}, {200}}. AS
engineer � supervisor, student � student, and 100 �
200, thus (I1,M1) � (I3,M3). Similarly, (I2,M2) �
(I3,M3). But (I1,M1) 6� (I2,M2), since engineer 6�
programmer.

Definition 6. (I, M) is the threshold attribute-set of
p, if and only if ∀u ∈ U(allowed(u, p) ⇒ (ATT (u) =
(I,M))), denoted by (I,M)p.

Definition 7. Given an SSoD policy e = ssod 〈P,U, k〉,
(I,M)pi

is the threshold value of each pi in
{p1, · · · , pm}, and (It,Mt) is an attribute-set. We say
(It,Mt) is an ancestor attribute-set for e, if and only if
∀(I,M)pi

(I � It ⇒ M � Mt).

In Example 1, assume that e1 = ssod 〈{p1, p2}, U, 2〉
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is an SSoD policy, and (Ip1 ,Mp1) = {{engineer, student
}, {50}}, (Ip2 ,Mp2) = {{programmer, student}, {150}}.
Then (I3,M3) is an ancestor attribute-set for e1, as
(I1 � I3 ⇒ M1 � M3) ∧ (I2 � I3 ⇒ M2 � M3).

Lemma 1. The number of ancestor attribute-sets for
an SSoD policy is equal to the least number of ancestors
of immutable attributes in these attribute-sets.

Proof. In a given SSoD policy e = ssod〈P,U, k〉,
where P = {p1, · · · , pm}, U = {u1, · · · , un}, for
each permission pi in P , there exists a threshold
attribute-set (I,M)pi

corresponding to pi. Assume
{I1, · · · , Ik} is the least number of the ancestors of
{Ipi

, · · · , Ipm
}, that means there does not exist less

than k immutable attribute-sets that together cover
all immutable sets in {Ipi

, · · · , Ipm
}. For each Ii in

{I1, · · · , Ik}, assume Ii is senior to some immutable
attribute-sets in {I ′

p1
, · · · , I

′

pt
} ⊆ {Ipi

, · · · , Ipm
}, Let

(I
′

p1
,M

′

p1
), (I

′

p2
,M

′

p2
) and (I

′

pt
,M

′

pt
) be the correspond-

ing attribute-sets. We can construct the least number
of the ancestor attribute-sets (I,M) for e as follows, let
I = Ii, and M = max(M

′

p1
, · · · ,M

′

pt
), where max re-

turns the senior-most mutable attribute-set of them. It
is easily to proof that (I,M) is an ancestor attribute-set
for e.

Definition 8. We say an SSoD policy e is unenforce-
able in a UCONA state ε, if and only if there exists
an attribute set (I,M) such that for any user-attribute
assignment relation ATT(u) which satisfies e under ε,
@u ∈ U((I,M) � ATT (u)). e is enforceable in ε if and
only if e is not unenforceable in ε.

Previous observations lead to Theorem 1, which
is helpful in verifying whether an SSoD policy is en-
forceable in a given UCONA state. We now present a
necessary and sufficient condition for an SSoD policy
to be enforceable in a UCONA state as follows.

Theorem 1. An SSoD policy e = ssod〈P,U, k〉 is
unenforceable if and only if the number of ancestor
attribute-sets for e is less than k.

Proof. For the “if” part, we assume that if the condi-
tion in the theorem holds. Then one can construct a
UCONA state in which there are k-1 users and each
of the users in U is assigned one of the k-1 ancestor
attribute-set (I, M) for e. Thus these k-1 users to-
gether cover all the permissions in P , and result in an
unsafe state.

For the “only if” part, we show that if the con-
dition in the theorem does not hold, then the SSoD
policy is enforceable. Consider that the number of an-
cestor attribute-sets is k. We can declare every pair of
(I, M) to be mutually exclusive, which forbids any user
to cover any two of them, thus safee(ε) is true.

Observe that if no k-1 ancestor attribute-sets

(I,M) such that these k-1 ancestor attribute-sets to-
gether have all the permissions in {p1, · · · , pm}, then
the SSoD policy is enforceable. Lemma 1 shows that
the number of least ancestors for attribute-sets (I,M)
is determined by the immutable attributes. Therefore,
we only need to check whether the number of ancestor
of attribute-sets (I, v) is less than k, where v is a con-
stant. The following cases may arise while computing
the number of ancestor for attribute-sets (I, v):

• There is only one type of immutable attributes re-
lated to permissions in {p1, · · · , pm}. e.g., the per-
missions are only related to roles.

• There are many types of immutable attribute re-
lated to permissions in {p1, · · · , pm}. e.g., in Ex-
ample 1, the permissions are related to both roles
and identities.

We propose an algorithm to automatically com-
pute the number of ancestors for attribute-sets (I, v)
in Algorithm 1. This algorithm assumes that the im-
mutable attribute is stored in a forest data structure.
This algorithm has a time complexity of O(NI

2), where
NI is the max number for each type of the immutable
attributes in a UCONA state. For the second case that
there are many types of immutable attribute related
to permissions in {p1, · · · , pm}, we can decompose this
case to many single types in the first case, after com-
puting each result, the final result is to multiply each
previous result.

5. Direct Statically Enforcing SSoD Policies

Given an enforceable SSoD policy set E in a UCONA

state ε, one can employ direct or indirect static en-
forcement of SSoD policies in ε. And in this section,
we show that direct statically enforcing SSoD policies
is coNP-complete in general, which means that there
exist difficult problem instances that take exponential
time in the worst case.

Theorem 2. SC-SSoD is coNP-complete.

Proof. Consider the complement of SC-SSoD, i.e.,
given an access control state ε and an SSoD policy
e, determine if safee(ε) is false, which is denoted by
SC-SSoD.

We first show that SC-SSoD is in NP. If an ac-
cess control state ε is not safe with respect to an SSoD
policy e = ssod 〈{p1, · · · , pm}, {u1, · · · , un}, k〉, there
must exist k-1 users in {u1, · · · , un} that together have
all the m permissions in {p1, · · · , pm}. If one correctly
guesses the k-1 users that together have all the m per-
missions in the policy, verifying that the guess is correct
can be done in polynomial time: compute the union of
the k-1 users’ permissions and check whether it is a su-
perset of the set of permissions in the SSoD policy. But
when verifying problem of safee(ε), one only needs to
compute the set of permissions of every size-(k-1) user
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Algorithm 1. Computing the number of the least ancestor of
attribute-sets (I, v)

Input: an attributes hierarchy A, the attribute-set I
Output: the number of least ancestor of (I, v)
1: initialize k = 0; S = U = T = ∅; // S, U and T are three
attribute-sets
2: foreach attribute a in I do //computing the ancestor
attributes for attribute-set I
3: if a has no senior attributes then
4: foreach attribute i in I do
5: if a is a senior attribute to i then
6: S = S ∪ {a}
7: end if
8: end foreach
9: end if
10: end foreach
11: foreach attribute s in S do
12: Junior(s) = ∅ // Junior(s) is an attribute-set
13: foreach attribute i in I do
14: if s is senior to i then
15: Junior(s) = Junior(s) ∪ {i}
16: end if
17: end foreach
18: end foreach
19: foreach attribute s in S do
20: U = U ∪ Junior(s)
21: end foreach
22: U = U − I
23: while k = 0
24: foreach attribute s in S do
25: k = 0
26: if Junior(s) ⊆ U then
27: k = 1
28: end if
29: if count(Junior(s)) = 1 then
30: S = S − s
31: U = U − {Junior(s)}
32: else then
33: T = T ∪ {s}
34: end if
35: end foreach
36: if t has the minimal junior attributes in T then
37: S = S − {t}
38: U = U − {Junior(t)}
39: end if
40: end while
41: return count(S)

sets in {u1, · · · , un}, and check whether it is a superset
of {p1, · · · , pm}. The running time for this straight-
forward algorithm grows polynomially in the number
of users and permissions and exponentially only in k.
Therefore, SC-SSoD is in NP.

We now show that SC-SSoD is NP-hard by reduc-
ing the NP-complete set covering problem [13] to it. In
the set covering problem, the inputs are a finite set S, a
family F = {S1, · · · , Sl} of subsets of S, and a budget
B. The goal is to determine whether there exist B sets
in F whose union is S. This problem is NP-complete.
The reduction is as follows. Given S, F and B, con-
struct an SSoD policy e as follows: for each element in
S, we create a permission for it, let k be B + 1 and
let m be the size of S. We construct a SSoD policy
ssod〈S, {u1, · · · , un}, B + 1〉, and construct a UCONA

state as follows. For each different subset Si(1 ≤ i ≤ l)

in F , create a user ui ∈ {u1, · · · , un}, to which all per-
missions in Si are assigned. The resulting safee(ε) is
false if and only if B sets in F cover S. Therefore,
SC-SSoD is NP-hard.

While the verification problem of safee(ε) is in-
tractable in general, efficient algorithms exist when k
is small or close to m. Lemma 2 and Lemma 3 show
that the two cases where k = 2 and k = m can
be enforced efficiently. When k = 2, any user from
{u1, · · · , un} have all the permissions in {p1, · · · , pm}
that resulting safee(ε) is false, otherwise safee(ε) is
true. When k = m, every permissions in {p1, · · · , pm}
be assigned to the users in {u1, · · · , un}, and there ex-
ists a user from {u1, · · · , un} has any two permissions in
{p1, · · · , pm}, then safee(ε) is false, otherwise safee(ε)
is true.

Lemma 2. Given an SSoD policy e = ssod〈P,U, 2〉,
and a UCONA state ε,safee(ε) is true if and only if no
user in U cover all permissions in P .

Proof. The SSoD policy e requires that two users are
required to cover all m permissions. For the “only if”
part, if safee(ε) is true, then no user is allowed to be
authorized for all m-1 permissions in P , then at least
two users are required to cover all the m-1 permissions.
For the “if” part, if a user cover all permissions in P ,
then safee(ε) is false.

Lemma 3. Given an SSoD policy e = ssod〈P,U,m〉,
and a UCONA state ε, let every permissions in P be
assigned to the users in U , safee(ε) is true if and only
if no user is a member of two permissions in P .

Proof. The SSoD policy e requires that m users are
required to cover all m permissions. For the “only if”
part, if safee(ε) is false, then m-1 users from U together
have m permissions in P , there must exist a user in U
who has no less than two permissions in P . For the
”if” part, if there is a user in U has two permissions in
P , then there must be m-2 users are required to cover
the rest m-2 permissions in P , the resulting m-1 users
together have all the permissions in P , thus safee(ε) is
false.

6. Indirect Statically Enforcing SSoD Policies
by SMEA Constraints

Although direct statically enforcing SSoD policies is in-
tractable, while checking whether a UCONA state satis-
fies a set of SMEA constraints is efficient, that provides
a justification for using SMEA constraints to enforce
SSoD policies. Therefore, we give algorithms to gen-
erate SMEA constraints to enforce SSoD policies by
following two steps: the first step is to translate re-
strictions on permissions expressed in SSoD policies to
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restrictions on attribute-set (I,M), and the second step
is to generate SMEA constraints from a set of attribute-
level SSoD requirements.

6.1 SMEA Constraints and ASSoD requirements

In the context of RBAC systems, constraints such as
static mutually exclusive roles (SMER) are introduced
to enforce SSoD policies. In the most basic form of
SMER, two roles may be declared to be mutually ex-
clusive in the sense that no user is allowed to be a mem-
ber of both roles; in the general form, it forbids a user
from being a member of k or more roles. Since UCONA

includes RBAC, and role is a special type of attributes
in UCONA [7]. We present a generalized form of the
SMEA constraints in this paper, which is directly mo-
tivated by SMER constraints.

Definition 9. A statically mutually exclusive attribute
(SMEA) constraint is expressed as

smea 〈{(I1,M1), · · · , (Im,Mm)}, {u1, · · · , un}, k〉

where each (Ii,Mi) is an attribute-set, m and n are
integers such that 2 ≤ k ≤ min(m,n). This constraint
forbids a user from {u1, · · · , un} being a member of k
or more attribute-sets in {(I1,M1), · · · , (Im,Mm)}.

While in a UCONA system, there exists only one
type of attribute, such as role, then the SMEA con-
straint can be expressed as smea 〈R,U, k〉, which is the
general form of SMER constraint that it forbids a user
from U being a member of k or more roles in R. In this
way, we say SMEA covers SMER.

Definition 10. A UCONA state ε is safe with respect
to an SMEA constraint c = smea〈{(I1,M1), · · · , (Im,Mm)},
U, k〉, which we denote by safec(ε), if and only if

∀ui ∈ U(|(ATT (ui) ∩ {(I1,M1), · · · , (Im,Mm)})| < k)

safec(ε) requires that no user is a member of k
or more attribute-sets in {(I1,M1), · · · , (Im,Mm)}. A
UCONA state ε is safe with respect to a set C of
SMEA constraints, which we denote by safeC(ε), if
and only if ε is safe with respect to every constraint in
C. As each SMEA constraint restricts the attribute-
set memberships of a single user, it is efficient to check
whether an UCONA state satisfies a set of SMEA con-
straints, which provides a justification for using SMEA
constraints to enforce SSoD policies.

Definition 11. Given a UCONA state ε, and a set
C of SMEA constraints, determine whether safeC(ε)
is true is called the safety checking problem for SMEA
constraints (SC-SMEA).

Theorem 3. SC-SMEA is in P.

Proof. One algorithm for verifying safeC(ε) is as fol-
lows. For each SMEA constraint in C and for each user

in ε, one first computes the set of all the attribute-
sets the user is a member of, then counts how many
attribute-sets in this set also appear in the SMEA con-
straint, and finally compares this number with n. This
algorithm has a time complexity of O(NuNaNc), where
Nu is the number of users in ε, Na is the number
of attribute-sets in ε, and Nc is the number of con-
straints.

SMEA constraints are expressed in terms of re-
strictions on attribute memberships, but SSoD policies
are expressed in terms of restrictions on permissions.
In order to generate SMEA constraints for enforcing
SSoD policies, the first step is to translate restrictions
on attribute-sets other than on permissions for SSoD
policies. For each permission pi in {p1, · · · , pm}, there
exists (I,M)pi which is the threshold value of pi. In this
way, we can define the attribute-level SSoD require-
ment, and translate an SSoD policy to the attribute-
level SSoD requirements.

Definition 12. An attribute-level Static Separation-of-
Duty (ASSoD) requirement is expressed as

assod〈{(I1,M1), · · · , (Im,Mm)}, {u1, · · · , un}, k〉

where each (Ii,Mi) is an attribute-set, m and n are
integers such that 2 ≤ k ≤ min(m,n). It means that
there should not exist a set of fewer than k users from
{u1, · · · , un} that together have memberships in all the
m attribute-sets in the requirement.

Definition 13. A UCONA state ε is safe with re-
spect to an ASSoD requirement a = assod <
{(I1,M1), · · · , (Im,Mm)}, {u1, · · · , un}, k >, which we
denote by safea(ε), if and only if

∀{u′

1, · · · , u
′

k−1} ⊆ {u1, · · · , un}(⋃k−1
i=1 auth pε(u

′

i)
)

* {(I1,M1), · · · , (Im,Mm)}

A UCONA state ε is safe with respect to a set A of
ASSoD requirements if it is safe with respect to every
requirement in A, and we write it as safeA(ε).

Definition 14. Given a UCONA state ε, and a set A
of ASSoD requirements, determine whether safeA(ε)
is true is called the safety checking problem for ASSoD
constraints (SC-ASSoD).

Theorem 4. SC-ASSoD is coNP-complete.

Proof. The proof is similar to the one in Theorem 2:
let each attribute-set in ASSoD requirement map to a
permission. Then the ASSoD requirement is mapped
to an SSoD policy.

6.2 Translating SSoD Policies to ASSoD Require-
ments

In this section, we show how to generate a set A of AS-
SoD requirements from an SSoD policy set E in a given
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UCONA state ε. By Theorem 1, if the SSoD policies in
E are unenforceable, that means there must be at least
one SSoD policy e in E of which cannot be satisfied
by ε, such that there exists k-1 attribute set (I,M) to-
gether have all the permissions in {p1, · · · , pm}. In this
case, this SSoD policy cannot be translated to any AS-
SoD requirements. Let ASSoD 〈A, ε〉 denotes the set
of ASSoD requirements derived from 〈E, ε〉, then the
ASSoD 〈A, ε〉 is an empty set.

Otherwise, if the SSoD policies in E are en-
forceable in ε, then for each e ∈ E, where e =
ssod 〈{p1, · · · , pm}, {u1, · · · , un}, k〉, and for each per-
mission pi in {p1, · · · , pm}, there exists an attribute-set
(Ii,Mi) that we say (Ii,Mi) has the permission pi . As
shown in Example 1, ({engineer, student}, {50}) has
p1, ({programmer, student}, {150}) has p2. Suppose
that many attribute-sets may have only one permis-
sion, that p3 is a permission, and that allowed(u, p3) ⇒
ATT (u) = {engineer|programmer, student|teacher, 100}.
It means that any user who wants to acquire the
permission p3 must have the the role of engineer or
programmer, Identity of student or teacher, and the
value of Digital money is no less than 100. In this way,
we divide it to four attribute-sets as follows:

• {{engineer, student}, {100}},
• {{engineer, teacher}, {100}},
• {{programmer, student}, {100}},
• {{programmer, teacher}, {100}}.

As the above discussion shows, each permission
may be related to one or more attribute-sets, assume
that each permission in {p1, · · · , pm} relates to the
number of attribute-sets is {k1, · · · , km}, then the total
number of elements in ASSoD 〈A, ε〉 is k1×k2×· · ·×km.
Theorem 5 shows that for any enforceable SSoD poli-
cies, the ASSoD 〈A, ε〉 equals to it while both of them
capture the same security requirement.

Theorem 5. Given an SSoD policy set E, a UCONA

state ε, and the ASSoD 〈A, ε〉 derived from 〈E, ε〉, then
safeA(ε) ⇔ safeE(ε).

Proof. Firstly, we show that if safeA(ε) is false, then
safeE(ε) is also false. Assume that safeA(ε) is false,
then there exist a = assod〈{(I1,M1), · · · , (Im,Mm)},
{u1, · · · , un}, k〉 and k-1 users that together cover all
attribute-sets in {(I1,M1), · · · , (Im,Mm)}. Given the
way in which ASSoD 〈A, ε〉 is derived from 〈E, ε〉, there
exists an SSoD policy in E such that the attribute-set
in A together have all the permissions in it. Therefore,
safeE(ε) is also false.

Secondly, we show that if safeE(ε) is false, then
safeA(ε) is also false. If safeE(ε) is false, then there
exists e = ssod 〈{p1, · · · , pm}, {u1, · · · , un}, k〉 and k-
1 users together cover all permissions in {p1, · · · , pm}.
For each permission pi in the permission set, there ex-
ists an attribute-set (Ii,Mi) covers pi, if it contains
some sub attribute-set, then we divide it, then there

exists a = 〈{(I1,M1), · · · , (Im,Mm)}, {u1, · · · , un}, k〉
derived from e. Given the way in which ASSoD 〈A, ε〉
is derived from 〈E, ε〉 then a ∈ A. Therefore,safeA(ε)
is also false.

6.3 Generating SMEA Constraints to Enforce ASSoD
Requirements

Since Theorem 4 shows that it is intractable to di-
rect statically enforce ASSoD requirements, while it
is efficient to check whether an UCONA state satis-
fies a SMEA constraint. Which motives us to generate
SMEA constraints to indirect statically enforcing SSoD
policies by using the ASSoD requirements as an inter-
mediate step. We now show how to generate SMEA
constraints from a set of ASSoD requirements.

Definition 15. Let C be a set of SMEA constraints,
and A be a set of ASSoD requirement. C enforce A if
and only if safeC(ε) ⇒ safeA(ε).

Theorem 6. For every ASSoD requirements, there ex-
ists a set of SMEA constraints that enforces it.

Proof. One approach for constructing a set C of SMEA
constraints to enforce a given ASSoD requirement
a = assod〈{(I1,M1), · · · , (Im,Mm)}, {u1, · · · , un}, k〉
as follows. We begin with C = ∅. Let I be the set of all
immutable attributes in the state. For each nonempty
subset S of I, such that all immutable attributes in S
do not have a common ancestor, for every s ∈ I such
that S ∪ {s} does not have a common ancestor, add
smea〈S ∪ {s}, U, |S|+ 1〉 to C.

We now show that C enforces a, suppose, for
the sake of contradiction that C does not enforce a,
there exists k-1 users together have all the attributes in
{(I1,M1), · · · , (Im,Mm)} without violating any SMEA
constraints in C. Then {(I1,M1), · · · , (Im,Mm)} can
be divided into k-1 sets which are the attribute mem-
berships of the k-1 users. Then all attributes in each
attribute set (I∗,M∗) must share a common ancestor,
because if do not, then let S ⊂ (I∗,M∗) be a largest
subset of (I∗,M∗) that shares a common ancestor, let
s be any attribute set in (I∗,M∗)/S, there must exists
a SMEA constraint smea〈S ∪ {s}, U, |S|+ 1〉 in C, and
this constraint will be violated, which contradicting the
assumption that all SMEA constraints in C will not be
violated.

The above theorem shows that we can generate
SMEA constraints to enforce any ASSoD requirements.
However, this may result in constraints that are more
restrictive than necessary. Ideally, we want to generate
SMEA constraints that can enforce the ASSoD require-
ment, and avoid generating constraints that are overly
restrictive. For this, we give the definition of restrictive
SMEA constraints.
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Definition 16. Let c1 and c2 be two sets of SMEA
constraints, c1 is at least as restrictive as c2 (denoted
by c1 D c2), if and only if

∀ε(safe{c1}(ε) ⇒ safe{c2}(ε))

when c1 D c2∧c2 6D c1, we say that c1 is more restrictive
than c2 (denoted by c1.c2), and when both c1 D c2∧c2 D
c1, we say c1 is equivalent to c2(denoted by c1 , c2),
otherwise, we say are incomparable(denoted by c1 6,
c2).

For every smea < {(I1,M1), · · · , (Im,Mm)}, {u1,
· · · , un}, k > (k < m), we then show that it can be
equivalently represented using a set of canonical (k =
m) SMEA constraints.

Lemma 4. For every SMEA constraint c (k < m),
there exists a set C

′
of canonical SMEA constraints of

cardinality k such that C
′
, c.

Proof. Given a SMEA constraint c = smea <
{(I1,M1), · · · , (Im,Mm)}, {u1, · · · , un}, k > (k < m),
Let C

′
be

{smea 〈(I ′,M ′), {u1, · · · , un}, k〉}|(I ′,M ′) ⊂
{(I1,M1), · · · , (Im,Mm)} ∧ |(I ′,M ′)| = k

C
′

is the set of all smea 〈(I ′,M ′), {u1, · · · , un}, k〉
constraints, such that (I ′,M ′) is a size-k subset of
{(I1,M1), · · · , (Im,Mm)}. It is easy to see that the
violation of any constraint in C

′
implies the violation

of the constraint c and the violation of the constraint c
implies the violation of some constraint in C

′
. There-

fore, C
′
, c.

Given a set of ASSoD requirements, there are mul-
tiple SMEA constraint sets can enforce these ASSoD
requirements. We prefer to use the less restrictive con-
straint set. In the following, we show how to compare
two sets of SMEA constraints. As shown in Lemma 4,
in this paper, we treat a SMEA constraint (k < m)
as a set of canonical SMEA constraints (k = m), and
compare two sets of canonical SMEA constraints. We
use junior(I, M) to denote the set of all attribute sets
that are junior to some attribute sets in (I,M).

Lemma 5. For any state ε and any canonical
SMEA constraints ci = smea〈(Ii,Mi), u, ki〉 and
cj = smea〈(Ij ,Mj), u, kj〉, ci B cj if and only if
junior(Ii,Mi) ⊂ junior(Ij ,Mj).

Proof. For the “only if” part, Suppose, for the sake
of contradiction, that ci B cj and junior(Ii,Mi) 6⊂
junior(Ij ,Mj). Consider a singer user in a state ε, and
the user is assigned to all attribute sets in (Ij ,Mj), then
safecj (ε) is false, but safeci(ε) is true since the single
user is not authorized for all attribute sets in (Ii,Mi).
However, this contradicts the assumption that ci B cj .

For the “if” part, if safecj (ε) is false, then there

exists a user who is authorized for all attribute sets
in (Ij ,Mj), and this user is also authorized for all at-
tribute sets in (Ii,Mi). Therefore, ∀ε(¬safecj (ε) ⇒
¬safeci(ε)).

It is efficient to decide if ci B cj , thus we can re-
move the redundant SMEA constraints, until we cannot
remove any constraint, this should give a least restric-
tive constraint set. The following definition makes this
more precise.

Definition 17. Let A be a set of ASSoD requirements
and C be a set of SMEA constraint, C is the least
restrictive SMEA of A if and only if safe{C}(ε) ⇒
safe{A}(ε), and there does not exist a different set C

′
of

SMEA constraints such that safe{C′}(ε) ⇒ safe{A}(ε)
and C

′ ⊂ C.

It can be easily shown that there exist two spe-
cial cases where there exist least restrictive SMEA
constraints to enforce these ASSoD requirements: (1)
smea < {(I1,M1), · · · , (Im,Mm)}, {u1, · · · , un}, 2 >
is the least restrictive SMEA enforces assod <
{(I1,M1), · · · , (Im,Mm)}, {u1, · · · , un}, 2 >. (2)
smea < {(I1,M1), · · · , (Im,Mm)}, {u1, · · · , un}, 2 >
is the least restrictive SMEA enforces the assod <
{(I1,M1), · · · , (Im,Mm)}, {u1, · · · , un}, 2 >. The
proof are essentially the same as that for Lemma 2 and
Lemma 3 respectively.

Given an ASSoD requirement, where 2 < k < m,
there may exist many sets of least restrictive SMEA
constraints that enforce it. We give an algorithm to
generate a least restrictive SMEA constraint set to en-
force ASSoD requirement in Algorithm 2. The algo-
rithm first constructs a set C of SMEA constraints to
enforce a given ASSoD requirement (from step 1 to
10). Secondly, the algorithm tries to remove the re-
dundant constraints in C, until we cannot remove any
constraints (from step 11 to 15). Finally, the algorithm
generates all such least restrictive constraints. The al-
gorithm has a time complexity of O(m2 · k · |AH|) for
step 1 to 10, while m and k are the two integers in in the
ASSoD requirement, and |AH| is the attribute hierar-
chy in {(I1,M1), · · · , (Im,Mm)}, the time complexity
is none of n. The algorithm has a time complexity of
O(|C|2 · |AH|) for step 11 to 15, while C is the SMEA
constraint set.

We now give an example to show how to generate
SMEA constraints that are least restrictive in imple-
menting an ASSoD requirement in a UCONA state.

Example 2. Continuing from Example 1, assume that
an SSoD policy is e = ssod〈{p1, p2, p3, p4}, U, 3〉, and
each user requesting the permission p3 or p4 must com-
ply with the following preA predicates:

• allowed(u,p3)⇒ preA(ATT(u),p3), where ATT(u)=
{{programmer,teacher},{100}}
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Algorithm 2. Generating a least restrictive SMEA constraint
set for an ASSoD requirement.

Input: assod 〈{(I1, M1), · · · , (Im, Mm)}, {u1, · · · , un}, k〉,
Output: C //a least restrictive SMEA constraints for an
ASSoD requirement.
1: initialize C = ∅;
2: foreach ∅ ⊂ S ⊆ {(I1, M1), · · · , (Im, Mm)}
3: if attributes in S do not share an ancestor
4: foreach s ⊆ {(I1, M1), · · · , (Im, Mm)}
5: if attributes in S ∪ {s} do not share an ancestor
6: C = C ∪ {c}
7: end if
8: end foreach
9: end if
10: end foreach
11: foreach ci ∈ C, cj ∈ C and ci 6= cj

12: if ci B cj

13: C = C/cj

14: end if
15: end foreach
16: return C

• allowed(u,p4)⇒ preA(ATT(u),p4), where ATT(u)=
{{supervisor,teacher},{200}}

For the sake of simplicity we refer the total four preA
predicates as follows:

• p1 → (I1,M1) = {{engineer, student}, {50}}
• p2 → (I2,M2) = {{programmer, student}, {150}}
• p3 → (I3,M3) = {{programmer, teacher}, {100}}
• p4 → (I4,M4) = {{supervisor, teacher}, {200}}

Firstly, we translate the SSoD policy to ASSoD require-
ments:

• a = assod〈{(I1,M1), (I2,M2), (I3,M3), (I4,M4)}, U, 3〉

Secondly, we generate a SMEA constraints for
A by Algorithm 1 ( from step 1 to step 10).
(I1,M1) and (I2,M2) share a common ances-
tor {{supervisor, student}, {150}}, and (I3,M3) and
(I4,M4) share a common ancestor {{supervisor, teacher},
{200}}. The generating SMEA constraints as follows:

• c1 = smea〈{(I1,M1), (I3,M3)}, U, 2〉
• c2 = smea〈{(I1,M1), (I4,M4)}, U, 2〉
• c3 = smea〈{(I2,M2), (I3,M3)}, U, 2〉
• c4 = smea〈{(I2,M2), (I4,M4)}, U, 2〉

Thirdly, we remove the redundant constraints in C by
Algorithm 2 ( from step 11 to step 15). Since c2 B
c1 and c4 B c3, then the constraints c1 and c3 can be
removed. Therefore, the set of following constraints is
a least restrictive SMEA for a.

• c2 = smea〈{(I1,M1), (I4,M4)}, U, 2〉
• c4 = smea〈{(I2,M2), (I4,M4)}, U, 2〉

7. Related Work

The concept of SoD dated back to 1975 by Saltzer
and Schroeder [14]; they took it as one of the de-
sign principles for protecting information, under the

name “separation-of-privilege”. The research commu-
nity has taken an active interest in incorporating sepa-
ration of duty controls into computer systems since the
late 1980s, Clark and Wilson [1] applied SoD princi-
ple to data objects to ensure integrity and to control
frauds along with well-formed transactions as two ma-
jor mechanisms for controlling fraud and error. Later
on, SoD has been studied by various researchers as a
security principle to avoid frauds. There are two impor-
tant issues relating to SoD policies: specification and
enforcement.

As for specification, it should be noted that most
existing approaches to SoD only consider constraint sets
with precisely two elements, the exception being the
RCL 2000 specification language [15]. And the distinc-
tion between the SSoD policy objectives and the SMER
constraints, as a mechanism to enforce them, is some-
times not clearly made; Ferraiolo et al. defined SSoD
as: “A user is authorized as a member of a role only
if that role is not mutually exclusive with any of the
other roles for which the user already possesses mem-
bership.” [16]. The specification scheme of the SSoD
policy we propose has its basis in set-based approach
to conflict of interest, and it is considerably simpler
syntactically than other schemes because the SSoD pol-
icy is expressed in terms of restrictions on permissions
other than attributes, such as roles. And we make no
attempt to define the conditions that must be met for
the constraints to be satisfied. In this way, our spec-
ification of SSoD is a generalization in the context of
UCONA.

In terms of enforcement, there are many ap-
proaches to enforce an SoD policy. One approach is dy-
namic enforcement. For example, in the literature [17],
DSoD constraint prevents a user from simultaneously
activating mutually exclusive roles in a session. It can
be enforced by maintaining a history which included
information on who performed each step. Sandhu [18],
[19] adopted this idea and presented transaction control
expressions, a history based mechanism for dynamically
enforcing SoD policies. Simon and Zurko [4] combined
the Object SoD and Operational SoD and introduced a
notion of history based SoD. The alternative is to keep
a history record of all access requests and to enter ei-
ther p1 or p2 at some point in the future. Crampton [20]
employed blacklist to enforce historical constraints, it
do not need to keep a historical record. However, since
these approaches for SoD only consider constraint sets
with a few elements, they will have unacceptable over-
heads to support large range of constraints.

Another approach to enforce SoD policies is static
enforcement. The first paper on SoD policies in RBAC
is proposed by Ferraiolo and Kuhn [21], who used the
terms static and dynamic SoD to refer to static and
dynamic enforcement of SoD, to our knowledge. It is
widely believed that one of RBAC’s main strength is
that it enables the use of constraints to support SoD
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policies. In the static enforcement of SoD policies, there
exists a wealth of literature on constraints to enforce
SSoD policies in RBAC, for example, mutual exclusion
of permissions, roles or users. Kuhn [22] discussed mu-
tual exclusion of roles for SoD policies and proposed a
safety condition: that no one user should possess the
privilege to execute every step of a task, thereby being
able to complete the task. Li et al. [11] used static
mutually exclusive role (SMER) constraints to enforce
SSoD policies in RBAC.

However, UCONA includes traditional access con-
trol models, such as discretionary access control
(DAC)[23], mandatory access control (MAC) [24], and
role-based access control (RBAC) [25], it was proposed
as a general and comprehensive model to extend the un-
derlying mechanism of traditional access control mod-
els. The enforcement of SoD policies in UCON is of
course more difficult than in traditional access control
models, because authorization decisions in UCON are
not only checked and made before the access, but may
be repeatedly checked during the access and may be
revoked if some policies are not satisfied, according to
the changes of the subject or object attributes, or en-
vironmental conditions. Motivated by the SMER con-
straints, we introduce the concept of SMEA constraints,
where SMEA is an extension to SMER, and it is also
more complex than SMER, since the attribute set con-
sists of the set of immutable attributes and the set of
mutable attributes. Which enables to distinguishing
properties of decision continuity and attribute mutabil-
ity for UCON. It is efficient to check whether a UCONA

state satisfies a set of SMEA constraints, which pro-
vides a justification for using SMEA constraints to en-
force SSoD policies. Therefore, we generate the least
restrictive SMEA constraints for enforcing SSoD poli-
cies in UCONA, by using the attribute-level SSoD re-
quirement as an intermediate step. The results are fun-
damental to understanding the enforcement of SSoD
policies in UCON.

8. Conclusion and Future Work

We have studied the fundamental problem of static en-
forcement of SSoD policies in UCONA. We first give a
set-based formal specification of SSoD in the context of
UCONA systems. We also show that static enforcement
is a simple and straightforward enforcement mechanism
for SSoD policies compare to dynamic enforcement. For
the static enforcement aspect, we show that direct stat-
ically enforcing SSoD policies in UCONA system is in-
tractable (coNP-complete), while enforcing SMEA con-
straints is efficient, which provides a justification for us-
ing SMER constraints to enforce SSoD policies. There-
fore, we translate SSoD policies to ASSoD requirements
that use ASSoD as an intermediate step, and generate
the least restrictive SMEA constraints from a set of AS-
SoD requirements. We also study the problem how to

verify whether a given SSoD configuration is enforce-
able. The results are fundamental to understanding
the effectiveness of using constraints to enforce SSoD
policies in UCON.

This paper only focuses on the SSoD policy with
pre-authorization policies in UCON. For condition core
models of UCON, and on-authorization policies in
UCON, it is a difficult problem because the system
state changes nondeterministically in UCONonA. As
monitoring is actively involved in usage decisions while
a requested right is exercised, the first approach in this
paper will be most promising approach for enforcing
SSoD in UCONonA system. We leave the research of
the SSoD policies in UCONonA models, and the DSoD
policies for future work.

9. Acknowledgements

This work is supported by National Natural Sci-
ence Foundation of China under Grant 60873225 and
61170108, Zhejiang Province Education Foundation un-
der Grant No.Y201120897.

References

[1] D. D. Clark, D.R. Wilson.: A comparison of commercial
and military computer security policies. 8th IEEE Sympo-
sium on Security and Privacy, Los Alamitos, 1987, pp.184-
195.

[2] D. D. Clark, D.R. Wilson.: Evolution of a model for com-
puter Integrity. Technical Report, Invitational Workshop on
Data Integrity, Section A2,1989, pp.1-3.

[3] D. Brewer, M. Nash.: The Chinese wall security policy.
10th IEEE Symposium on Security and Privacy, California,
1989, pp.206-214.

[4] R. T. Simon, M. E. Zurko.: Separation of Duty in Role-
Based Environments. 10th Computer Security Foundations
Workshop, June 10-12, 1997, pp.183-194.

[5] V.D. Gligor, S.I. Gavrila, D. Ferraiolo: On the Formal Def-
inition of Separation- of-Duty Policies and their Composi-
tion. 19th IEEE Symposium on Security and Privacy, 1998,
pp.172-183.

[6] D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli.: Role-
Based Access Control, Artech House, 2003, pp.47-63.

[7] J. Park., R. Sandhu.: The UCONABC Usage Control
Model. ACM Transactions on Information and System Se-
curity. Vo. 7, No. 1, 2004, pp.128-174.

[8] X. Zhang, F. Parisi-Presicce, R. Sandhu, and J. Park.: For-
mal model and policy specification of usage control. ACM
Trans. Inf. Syst. Security, vol. 8, no. 4, pp.351-387, 2005.

[9] N. Li, J. C. Mitchell, and W. H. Winsborough.: Beyond
Proof-of-Compliance: Security Analysis in Trust Manage-
ment. Journal of the ACM. Volume 52, Number. 3, 2005,
pp.474-514.

[10] ANSI. American National Standard for Information
Technology-Role Based Access Control. ANSI INCITS 359-
2004, 2004.

[11] N. Li., M. Tripunitara., and Z. Bizri.: On Mutually Ex-
clusive Roles and Separation-of-Duty. ACM Transactions
on Information and System Security. Vol. 10, No. 2, 2007,
pp.1-35.

[12] N. Li, M. V. Tripunitara, and Q. Wang.: Resiliency Poli-
cies in Access Control. 13th ACM Conference on Computer



12
IEICE TRANS. COMMUN., VOL.Exx–B, NO.05 MAY 2012

and Communication Security (CCS), Alexandria, Virginia,
USA, 2006, pp.113-123

[13] C. H.Papadimitriou. Computational Complexity. Addison
Wesley Longman, 1994.

[14] J. H. Saltzer, M. D. Schroeder.: The Protection of Infor-
mation in Computer Systems. Proceed Communications of
the ACM. Vol. 63, No. 9, 1975, pp.1278-1308.

[15] G. J. Ahn, R. Sandhu.: Role-based authorization con-
straints specification. ACM Transactions on Information
and System Security. Volume 3, Number 4, 2000, pp.207-
226.

[16] D. F. Ferralolo, J. A. Cuigini, and D. R. Kuhr. 1995. Role-
based access control (RBAC): Features and motivations.
Annual Computer Security Applications Conference, 1995.

[17] S. N. Foley. The specification and implementation of ’com-
mercial’ security requirements including dynamic segrega-
tion of duties. 4th ACM Conference on Computer and Com-
munications Security. 1997, pp.125-134.

[18] R. Sandhu.: Transaction Control Expressions for Separa-
tion of Duties. 4th Annual Computer Security Applications
Conference, Orlando, Florida, 1988, pp. 282-286.

[19] R. Sandhu.: Separation of Duties in Computerized Infor-
mation Systems. the IFIP WG11.3 Workshop on Database
Security, Halifax, 1990, pp. 18-21.

[20] J. Crampton.: Specifying and enforcing constraints in role-
based access control. 8th ACM Symposium on Access Con-
trol Models and Technologies, Como, Italy, 2003, pp. 43-50.

[21] D. F. Ferraiolo, and D. R. Kuhn.: Role-based access con-
trol. 15th National Information Systems Security Confer-
ence,1992.

[22] D. R. Kuhn.: Mutual exclusion of roles as a means of im-
plementing separation of duty in role-based access control
systems. In Proceedings of the Second ACM Workshop on
Role-Based Access Control, 1997, pp. 23-30.

[23] M. H. Harrison, W. L. Ruzzo, and J. D. Ullman.: Protection
in operating systems. Commun. ACM, vol. 19, no. 8, 1976,
pp. 461-471.

[24] D. E. Denning.: A lattice model of secure information flow.
Commun. ACM, vol. 19, no. 5, 1976, pp. 236-243.

[25] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman.: Role-
Based Access Control Models. Comput., Vol. 29, No. 2,
1996, pp. 38-47.

 

Jianfeng Lu received the B.S. degree
in School of Computer Science and Tech-
nology at Wuhan University of Science
and Technology in 2005, and the PhD de-
gree in School of Computer Science and
Technology at Huazhong University of
Science and Technology in 2010. He is
a lecturer in the School of Mathematics-
Physical and Information Engineering at
Zhejiang Normal University. His research
interests include distributed system secu-

rity and access control.

 

Ruixuan Li received the B.S.,
M.S., and Ph.D. degrees from School
of Computer Science and Technology at

Huazhong University of Science and Tech-
nology in 1997, 2000, and 2004, respec-
tively. He is now a full Professor of School
of Computer Science and Technology at
Huazhong University of Science and Tech-
nology. His research interests include dis-
tributed system security, information re-
trieval, peer-to-peer computing, and so-

cial network.

Jinwei Hu received his B.S. degree in
School of Information Engineering from
Nanchang University in 2004, and the
PhD degree in College of Computer Sci-
ence and Technology at Huazhong Univer-
sity of Science and Technology in 2010.
He is now a post-doc in Department of
Computer Science, College of Engineer-
ing, Qatar University. His research in-
terests include policy analysis, distributed
system security, and access control.

Dewu Xu received his M.S. degree in
School of Information Science and Tech-
nology from East China Normal Univer-
sity in 2005. Now he is a lecturer in the
School of Mathematics-Physical and In-
formation Engineering at Zhejiang Nor-
mal University. His research interests in-
clude distributed system security.


