
CAST: A Page-Level FTL with Compact Address
Mapping and Parallel Data Blocks

Zhiyong Xu 1,2*, Ruixuan Li3, and Cheng-Zhong Xu1,4

1Shenzhen Institute of Advanced Technology, Chinese Academy of Science, China
2Math and Computer Science Department, Suffolk University, USA

3School of Computer Science and Technology, Huazhong University of Science and Technology, China
4Electrical and Computer Engineering, Wayne State University, USA

*Email: zxu@mcs.suffolk.edu

Abstract—NAND flash memory based Solid State Drive (SSD)
is increasingly popular as one of the major non-volatile storage
devices. Due to the superior performance and energy efficiency
properties, it becomes an important complimentary device be-
tween the main memory and the traditional mechanical Hard
Disk Drive (HDD). It is also anticipated to substitute HDD
as the mainstream secondary storage. Today, flash memory is
widely used in embedded systems, hand-held devices, personal
computers and even enterprise computer systems. To access the
data on the flash, a software component called Flash Translation
Layer (FTL) has to be applied to convert the file system logical
address into the corresponding physical address. FTL has great
impacts on the system overall performance. Numerous FTL
algorithms have been proposed in the past decade. DFTL is one of
the most popular page-level address mapping FTL algorithms.
It has been considered to have the best flexibility. However, it
has extra mapping information I/O overhead and cannot always
achieve the optimal performance.

In this paper, we propose CAST, a novel and efficient page-
level FTL algorithm to relieve this issue. CAST reserves a small
portion of embedded SRAM to cache most recently accessed
logical-physical address mapping information. Unlike DFTL, we
use a compact packing methodology. Consecutive logical-physical
page mapping information is represented with only a single entry.
Thus, more address mapping information can be maintained in
the caching table, and the cache hit rates can be increased.
To improve the garbage collection efficiency, CAST maintains
multiple current data blocks simultaneously. When a new data
write request comes, the system can select an appropriate one to
conduct the process based on the request issuer and/or logical
address information. Our simulation results show that CAST
outperforms DFTL under various workloads and it can reduce
the number of erase operations and decrease the I/O response
time significantly.

Keywords: NAND flash memory, Solid-State Drive (SSD), Single-
Level Cell (SLC), Multi-Level Cell (MLC), Flash Translatio Layer
(FTL), Demand-based FTL (DFTL)

I. INTRODUCTION

Magnetic Hard Disk Drive (HDD) has been the default secondary
storage device since its appearance. However, it has been constantly
criticized for long I/O access latency, high energy consumption
and uncertain reliability. Recently, NAND based flash memory is
gaining more and more attentions from both academia and industry
as an emerging technology to replace HDD for the next generation
storage device [1], [2], [3], [4]. Flash memory has many promising
advantages such as low access latency, light weight, low energy
consumption and high robustness to vibrations and temperature. It
is originally used for portable and mobile devices which have small

capacity requirements. As the price is keep falling down and the
capacity is increasing rapidly, flash memory based SSD is becoming
increasingly popular in personal desktop and laptops. Today, major
commercial vendors such as Apple, Dell, and Lenovo are all offering
computer products configured with SSDs. SSDs are entering high-
end enterprise market as well. Cloud computing storage and service
providers such as Amazon, Facebook and Dropbox are now running
on servers equipped with SSD in their data centers [5]. Search engine
service providers like Google and Baidu also announced to adopt
SSD-based platforms now or in the near future.

Flash memory based SSDs still face serious challenges. Those
problems could impede the success of SSDs if they are not addressed
appropriately. For example, although the capacity of flash memory
increases rapidly in recent years, it is still lag behind the HDD. As we
are entering the big data era, the storage capacity requirement is keep
rising exponentially. Larger capacity SSDs are in urgent need to deal
with cloud and other data-centric applications. Another issue is that
the price of flash memory is still an order of magnitude higher than
the HDD for the same capacity. The above problems can be partially
solved as more and more advanced technology are introduced. In
recent years, the capacity of flash memory increases much faster
than the HDD. Commercial vendors such as Samsung and Micron
are offering SSDs with the capacity of 512GB and up. Though it is
still smaller than HDD, it is already big enough for most ordinary
users. The price of flash memory is also falling down quickly. SSD
prices plummeted by 48 percent over the past year [6]. Today, a
256GB SSD can be purchase for about $250 dollars or even less.

However, there are many other issues which are not easy to solve
because of the inherited nature of flash memory technology. One
of the biggest issues in the existing SSD architecture is the limited
number of erase times. For a SLC flash memory, the maximum
number of erase operations is about 50,000 to 100,000. For a
high density MLC flash memory, the maximum number of erases
is reduced to 5000 to 10000. As more layers are introduced, the
number can reduce to 3000 or even less. Although the accumulated
amount of data it can write is sufficient for ordinary users who are
running regular applications, for enterprise environments like cloud
data centers, the high data write/update demands can make a SSD
device wear out quickly. To solve this issue, an effective wear-leveling
algorithm has to be introduced.

Another issue is the out-of-place updates requirement. That is,
if the application changes the value of an existing data, we cannot
change it in place directly. Flash memory does the data modification
in the following steps. First, the system chooses another empty page
to write the new data. Second, it invalidates the page contains the
old copy. Finally, it updates the address mapping information in FTL
tables. The invalidated pages cannot be reused until it is erased. The
erase operation is much slower than read/write operations, and the
minimal unit for an erase operation is a block. Furthermore, for high

density MLC flash memory, the pages within a data block can only
be written sequentially. Thus the order of page writes is fixed. Such
inflexibility could result in serious performance problems without a
carefully designed data write/update policy.

For flash memory, the data stored on the hardware cannot be
accessed directly because the file system uses the logical addresses
and the data locations are represented with the physical addresses.
The Flash Translation Layer (FTL) is introduced to fulfill the task.
FTL is the software component which converts the logical address in
an I/O request into the corresponding physical address on the flash
hardware. It also includes the garbage collection and wear-leveling
policies. Thus, FTL has a great influence on the system overall
performance. In this paper, we present Compact Address Mapping
and Parallel Data Blocks (CAST), a novel page-level mapping FTL
design to reduce the number of erase operations, improve the lifetime
of SSD device and decrease the I/O response time. In summary, we
make the following contributions.

∙ We propose a novel address mapping strategy. Multiple page
address mapping information are packed together, and stored
in a single entry. Thus, the caching table in SRAM can cover
larger ranges for information translation. The cache hit rate
is improved, and the number of translation page I/O requests
associated with the address mapping operations is reduced
remarkably.

∙ We design a parallel current data block strategy. The data
write/update requests are well distributed onto different data
blocks based on the issuers and/or logical address information.
Such a mechanism can effectively group pages with similar
access patterns together, and reduce the overhead for the garbage
collection operations.

∙ Finally, we conduct extensive simulation experiments to evalu-
ate the performance of CAST. We compare CAST with the state-
of-the-art page-level and hybrid FTL algorithms. The results
prove that the CAST outperforms in both the number of erase
operations and the average response time performance.

The rest of the paper is organized as follows. In Section II, we first
present the basic background information about flash memory, and
give an overview of various FTL schemes. Then we describe DFTL,
a state-of-the-art page-level mapping algorithm in detail. We also
discuss the major issues in DFTL. In Section III, we describe the
CAST system design, data structure, address mapping information
maintenance and I/O operations. In Section IV, we first introduce
the simulation experimental configurations, and then discuss the
simulation results in detail. In Section V, we introduce the related
works. In Section VI, we conclude the paper and give the future
work.

II. BACKGROUND

A. Flash and SSD Overview
A Solid-State Disk (SSD) is a data storage device which is different

from a traditional HDD. It uses integrated circuits to build an array of
semiconductor memory instead of magnetic media. It does not have
a mechanical moving part, and it is fast and light. The origins of
SSDs can be traced back to the 1950s, and various types of memory
were used since then. In 1995, flash memory based SSDs appeared
and soon became the standard configuration. Recently, most SSDs are
built on NAND flash memory. Flash is a non-volatile storage media
which is widely used in mobile and portable devices such as PDAs,
digital cameras, smart phones, video games, etc. As the flash capacity
increases rapidly, flash based SSDs are now used in personal laptops
and desktops. Enterprise Storage is moving to SSDs as well. Major
SSD vendors such as Samsung, Micron, Intel and Crucial etc. are
offering a wide range of SSD products. The capacity ranges from
1GB to 512GB, and even larger capacity SSDs are also available
upon customer’s requests. Although the capacity of a single SSD

device is still smaller than a HDD, it is already big enough for most
applications.

TABLE I
SSD ORGANIZATIONS [7]

Capacity Page Block OOB Read Write Erase
(GB) (KB) (KB) (Bytes) (𝜇s) (𝜇s) (ms)

8 (SLC) 2 128 64 45 220 0.7
64 (MLC) 4 1024 224 50 900 3

512 (MLC) 8 2048 448 75 1300 3.8

A SSD is organized in a hierarchical architecture [8]. The lowest
layer is a page. Typically, the size of a page varies from 512B to
8KB. For each page, an Out-Of-Band (OOB) area is preserved to store
metadata and other related information. The size of OOB varies from
56 to 448 bytes. Multiple pages are grouped together to form a block.
A block can contain 64 to 512 pages depends on the configuration.
Above the block, there are plane, die, package and ssd layers. In
general, the object in a layer is always composed of multiple objects
in the lower layer. Besides flash components, a SSD also contains a
SRAM component (several megabytes), which can be used for I/O
buffers and maintains mapping information.

Flash memory is classified into two categories, Single-Level Cell
(SLC) and Multi-Level Cell (MLC). In SLC flash, a cell can only
store one single bit, while in MLC flash, a cell can store two or even
more bits. Clearly, MLC flash has a higher density than SLC flash,
thus it has larger capacity. However, the lifetime of MLC is much
shorter than SLC. SLC flash can endure 50 to 100 thousands erase
operations, while for MLC flash, this number is reduced to 5 to 10
thousands. The I/O latency in MLC is also much longer than SLC.
Although the performance of MLC is worse than SLC, the price
per GB is much cheaper for MLC. Due to the cost and capacity
considerations, most low or middle class SSDs are using MLC flash.

Flash memory supports three kinds of data operations. Besides
read and write operations, it also has a time-consuming block erase
operation. For read and write operations, a page is the smallest I/O
unit. Flash memory has a out-of-place update feature, new data can
only be written to an empty page, and a page can only be reused
after the block containing it has be erased. For MLC flash, there is
an extra limitation on write operations. All pages in a block can only
be written sequentially. For the erase operation, a block is the minimal
processing unit. Among these operations, data reads are the fastest,
and data writes are 5 to 20 times slower. Block erases are the slowest
which have to take several milliseconds to finish. Table I shows the
information of three SSD products from Micron Technology, Inc. We
can observe that, as the capacity increases, the page size becomes
larger, and the block size also increases. The read, write and erase
operations become slower.

There are additional operations a SSD has to execute. To main-
tain the similar lifetime cycles for all flash blocks, wear-leveling
techniques are employed. Each time, when an empty data block is
requested, the system chooses a block with the largest remaining erase
numbers. The garbage collection process is invoked when there are
no more available pages for coming write operations. It combines
the valid data from multiple blocks into another one and releases
the space occupied by invalid pages. Three types of block merges
operations may occur, including switch merge, partial merge, and full
merge. Switch merge has the lowest cost, while full merge has the
highest cost and may involve excessive number of erase operations.

In flash memory, each page has a physical address. However, the
file system uses logical addresses to refer pages. In order to achieve
low I/O latencies and minimize the erase operations, an efficient
translation mechanism has to be applied. This work is done by Flash
Translation Layer (FTL). FTL is a critical software component in the
flash memory providing logical to physical address translation func-

tionality. It collaborates with wear-leveling and garbage collection
algorithms to achieve the optimal performance.

B. Flash Translation Layer (FTL)
In the past decade, various FTL algorithms have been proposed.

Based on the structure of the logical-physical address mapping table,
they can be categorized into three types. The first one is the page-level
mapping scheme. In this approach, the mapping table has an entry
for each individual logical page, thus an I/O request can be fulfilled
immediately by consulting the table. The advantage of this approach
is the flexible storage management. A logical page can be stored in
any physical page on the flash memory. The drawback is the high
memory space requirement to keep the mapping table, especially for
large capacity SSDs. Typically, the SRAM is very small. If we store
the entire page-level mapping table in SRAM, it is either no space
or very limited space for other usages.

The second mechanism is the block-level mapping algorithm. In
this approach, to relieve the large SRAM space requirement, the
mapping table only stores the block-level mapping information. That
is, a logical page address is divided into two components, a logical
block address and an offset of the corresponding page inside the
block. When an I/O request is coming, the system checks the mapping
table to find out the physical address of the corresponding block on
the flash, and then goes to the page based on the offset information.
A big advantage of this approach is that it can greatly reduce the
size of the mapping table. However, it is not very flexible since the
location of a page can be stored within a physical block is fixed. It
could result in a severe problem of wasting the storage space, and
make the garbage collection process more cumbersome.

To achieve the benefits of both approaches and minimize their
overheads, the third approach called hybrid mapping algorithm is
proposed. It divides the flash blocks into two types, data blocks
and log blocks. It uses block-level mapping mechanism for data
blocks, and adopts page-level mapping for log blocks. When a write
operation comes, the new data is first written into a log block. The
system periodically flushes the content in log blocks onto data blocks.
Typically, the total number of log blocks is relatively small, and they
only occupy a small percentage of the SSD space (say, 3%). Thus,
the SRAM memory space needed to keep the page-level mapping
information for log blocks is much smaller compare to a pure
page-level mapping algorithm. However, even with a careful design,
expensive full merge and partial merge operations are unavoidable
and seriously hurt the system performance.

C. Demand-based Page-Mapping FTL (DFTL)
In [9], the authors proposed DFTL, an efficient page-level mapping

mechanism which can reduce the overhead in the pure page-level
mapping algorithms. In DFTL, the page level logical to physical
address mapping information has been divided into two parts. The
most recently accessed items are stored in the Cached Mapping
Table (CMT). To relieve the space overhead, CMT is small and can
only keep a subset of translation information. The entire logical-
to-physical address translation set is always maintained on some
logically fixed portion of flash and is referred as the Global Mapping
Table (GMT). The blocks in GMT are called translation blocks. The
description of the DFTL organization is shown in Figure 1.

1) Data Structure: As shown in Figure 1, DFTL maintains a
Cache Mapping Table (CMT) and a Global Translation Directory
(GTD) table in the embedded SRAM. CMT keeps the page level
mapping information for the most recently accessed pages. Each entry
has a LPN and a PPN fields to record the logical page address and
the associated physical page address on the flash. Since the number
of entries is limited, DFTL uses a variance of the LRU algorithm
to select the entries to be replaced when it is full. In DFTL, both
read and write operations are considered. Thus, CMT is used as the
address mapping cache for all I/O requests received from the host.

Cache Mapping Table

LPN PPN

15 200

3208

9 321

SRAM

Global Translation Directory

18

54

180

181

0

2

1

3322

Flash Based Solid State Drive

Data Block

Translation Block

Translation Block

Data Block

Data Block

Data Block

Data Block

Data Block

Data Block

Data Block

Translation
Page

Translation

Translation

Page

PagePage
Translation

LPN

1024

1025

1026

1027

1535

PPN

100

2508

2509

2510

420

10

95 36

Current Data Block

Current Translation Block

VPNM MPPN

Fig. 1. Data Structures in DFTL

GTD maintains the physical page address information for all
the translation pages. The entries in the GTD table also contains
two columns, called 𝑀𝑉 𝑃𝑁 and 𝑀𝑃𝑃𝑁 . 𝑀𝑉 𝑃𝑁 represents the
consecutive logical orders of all the translation pages, starting from
0. 𝑀𝑃𝑃𝑁 represents the physical address for each corresponding
translation page. A translation page can store 512 data page address
mapping entries (if we choose 4KB as the page size, and assume
4 bytes are needed to represent an address). In the GTD table, the
number of translation pages needed is determined by the capacity
of the SSD. For a 1GB SSD, the GTD size is only 4KB. 𝑀𝑉 𝑃𝑁

is always contiguous and starts from 0. For the translation page
with 𝑀𝑉 𝑃𝑁 0, it keeps the logical-physical page address mapping
information for the first 512 logical pages, starting from the logical
page address 0 till the logical page address 511. In Figure 1, we
show that the translation page with the 𝑀𝑉 𝑃𝑁 2 has the mapping
information for the logical page addresses from 1024 to 1535. Clearly,
𝑀𝑉 𝑃𝑁 can be omitted to further reduce the GTD size requirement
since it is always sequential and starts from 0. Similarly, we can also
omit 𝐿𝑃𝑁 column to double the number of entries to be stored in
each translation page since it can be determined easily.

As shown in Figure 1, DFTL only have one current data block. It
is used to write new data issued from any users. It also maintains a
current translation block for all the translation page update operations.

2) I/O Operations: In DFTL, when a read request is coming,
depending on its size, the request is divided into multiple page read
requests. The system first checks the CMT with their logical page
addresses one by one. For each page address, if there is a cache hit,
which means the corresponding physical page address can be found
in CMT, a page read request is generated and submitted for execution
directly. The system goes to the next page read request. If there is
a cache miss, the system has to examine the GTD table. It looks up
for the 𝑀𝑃𝑃𝑁 of the translation page which contains the location
information of this logical page address. After that, DFTL executes
a translation page read operation with the associated 𝑀𝑃𝑃𝑁 . The
translation page is then loaded into an OS buffer, and DFTL extracts
the required data page mapping information. At this stage, a data
page read command is issued to retrieve the requested data from
the corresponding physical page on the flash memory. The process
finishes. In both cases, this data page mapping information has to be
moved or inserted into the head of CMT. If CMT is full, a cache

replacement algorithm is called. DFTL uses the segmented LRU
array cache algorithm [10] for replacement. Other algorithms such
as evicting Least Frequently Used mappings can also be used.

For a write operation, the process is similar except that it has
to write the new data to another location. In DFTL, the new data is
written to the first available page in the current data block. If the block
is full, a new current data block has to be allocated. Furthermore, the
mapping entry in the corresponding translation page has to be updated
as well. If the mapping information update operation is executed
immediately after the data write operation, it could result in a large
number of extra translation page write operations. To relieve this
issue, DFTL uses the lazy update and batch operations. Thus, it can
exploit the temporal locality property of I/O operations to reduce
the cost. With this solution, a translation page may contain outdated
mapping information during the system execution time. However, this
solution does not affect the correctness because the most up-to-date
mapping information for those pages can still be found in CMT.

3) Problems: DFTL successfully solves the SRAM memory
consumption issue in pure page-level mapping algorithms. However,
there are still unsolved issues which could affect its performance.
First, the relative small sized CMT can only store a limited number
of entries. Thus, it can only cover a small range of data page mapping
information on SSD. This is not a big problem if there are only a
few applications and/or the workload has high localities. However, in
the enterprise environment, the number of applications running in the
system could be pretty large and the workload might contain widely
scattered I/O requests. Even for the ordinary users, running multi-
tasks at the same time is not rare. In such scenarios, it can easily
exceed the address range the CMT can hold and result in excessive
translation page read/write operations.

Second, DFTL uses only one current data block for write requests.
It always choose the next available page in this block to accommodate
the new data. In case of vastly mixed write requests from a large
number of issuers, such an approach can easily mix the hot and cold
pages from different issuers and store them the same block. Those
pages are likely having different lifetime behaviors. Apparently, such
a solution increases the valid page copy overheads for block erase
operations during the garbage collection.

In summary, DFTL algorithm still has some drawbacks in its
design and they affect the system performance in certain scenarios.
Improvements are needed for the multi-client and multi-application
environments.

III. CAST SYSTEM ARCHITECTURE

We propose a novel page-level mapping FTL algorithm, called
CAST to address these issues. CAST uses the compact address
mapping and parallel current data blocks techniques. It can retain
the desirable features in DFTL algorithm, it can also minimize the
overhead. In this section, we give the detailed description of CAST.

A. Motivation
We have conducted a measurement study on I/O request traces

collected from a variety set of the real world workloads. The detailed
description about the traces is shown in Table II. We are more
interested in the read/write request ratio as well as the average sizes
since they are the most important factors to motivate our design.
Thus, we omit other I/O features.

MSR trace is obtained from the Storage Networking Industry
Association [11]. It includes 1-week block I/O traces of enterprise
servers at Microsoft Research Cambridge. We only choose a subset
from the trace. Financial1 and WebSearch2 traces are downloaded
from the UMass Trace Repository maintained by the Laboratory
for Advanced System Software at the University of Massachusetts,
Amherst [12]. Laptop trace is collected using diskmon [13] (a
tool included in the Windows Sysinternals Suite) on a user laptop
conducting ordinary office work. These workloads present different
behaviors. MSR and Financial1 traces have much more write requests

TABLE II
WORKLOAD CHARACTERISTICS

Trace Avg. I/O Avg. Avg. Read Avg.
Size Read Write Rate Interval

MSR 8.93 10.92 8.73 9.32% 32.79ms
Financial1 3.38 2.24 3.72 23.16% 8.19ms

Laptop 22.28 21.72 23.13 60.69% 68.60ms
WebSearch2 15.07 15.07 8.10 99.97% 3.36ms

than read requests, while WebSearch2 is a read dominant workload.
Laptop trace is somehow balanced. The Laptop trace has the largest
average request size at 22.28KB, and Financial1 has the smallest
average size at 3.38KB.

To further understand the workload characteristics, we also plot the
cumulative distribution of the I/O requests in these workloads. The
result is shown in Figure 2. Clearly, large-size I/O requests are not
rare in most traces. For example, 33% requests in Laptop trace have
a size over 10KB. It even has about 9% of total requests are larger
than 50KB. For MSR trace, it has 17% of total requests are larger
than 10KB. Even for the Financial1 trace with the minimal average
request size, it still has 8.7% of requests larger than 5KB. Assume
the page size in SLC flash is 512 bytes, a single 5KB request takes 10
page I/Os. 10 entries in DFTL mapping table has to be used to reflect
the mapping information. Even for MLC flash with 2KB page size,
2.5 entries are needed on average to store the mapping information.
Typically, a large I/O request consists of multiple consecutive page
I/Os and can be viewed as spatial locality in I/O accesses. While
the temporal locality has been well exploited in DFTL, the spatial
locality is not well considered.

Based on this observation, we design a new mapping strategy in
CAST. We combine multiple address mapping information together
and store them in a single entry. Thus, CAST reduces the number of
entries needed for the same range of address mapping information. In
other words, with the same amount of SRAM space allocated, CAST
can cover much larger mapping range than DFTL. Thus, the cache hit
rates can be improved and the number of I/Os on the translation pages
can be reduced. This property is especially useful in the enterprise
environment, where the number of concurrent users is big.

Another improvement in CAST is that we are using multiple
current data blocks instead of just one. In DFTL, the write requests
coming from different issuers could be mixed with others in the
current data block. Since these users are running different applications
with various I/O behaviors, they tend to access widely scattered
logical data and their corresponding physical pages. These data
represent different lifetime expectations. Some pages are valid for
a long time after they are created, while some others might become
invalid in a short period. The mixture of valid and invalid pages
causes big trouble for block management, and increase the garbage
collection overhead. To solve this issue, in CAST, we use multiple
current data blocks to separate write requests from different issuers
and/or different logical addresses. In our simulation, we find out that
this strategy can effectively improve the garbage collection efficiency.

B. Data Structures
Figure 3 shows the system architecture of CAST. In the inter-

nal SRAM, we maintain a caching table called Compact Address
Mapping Table (CAMT), and a GTD table. Each entry in CAMT
represents the mapping information for multiple consecutive pages
in both logical and physical addresses. It has three columns. The
first one records the logical address information of the first page
in this entry. The second column keeps the corresponding physical
address information of the first physical page on the flash. The third
column records the number of consecutive pages in this mapping
entry. Compare with the CMT in DFTL algorithm, CAMT adds an
extra column for each entry and the first two columns have different

0

25

50

75

100

0 5 10 15 20 25 30 35 40 45 50

Pe
rc

en
ta

ge
 (%

)

I/O Request Size (KB)

a) MSR Trace

0

25

50

75

100

0 5 10 15 20 25 30 35 40 45 50

Pe
rc

en
ta

ge
 (%

)

I/O Request Size (KB)

b) Financial1 Trace

0

25

50

75

100

0 5 10 15 20 25 30 35 40 45 50

Pe
rc

en
ta

ge
 (%

)

I/O Request Size (KB)

c) Laptop Trace

0

25

50

75

100

0 5 10 15 20 25 30 35 40 45 50

Pe
rc

en
ta

ge
 (%

)

I/O Request Size (KB)

d) WebSearch2 Trace

Fig. 2. Cumulative Size Distribution of I/O Requests

15

114

320

28

Size

1

8

200

PPN

8

SRAM

3

LPN

Flash Based Solid State Drive

Current Translation Block

Current Data Block

Data Block

Data Block Translation Block

Data Block

Current Data Block

Current Data Block Current Data Block

Translation Block

Data Block

Data Block

Compact Address Mapping Table

Fig. 3. Data Structures used in CAST

meanings. If using the same amount of SRAM, the number of entries
in CAMT is less than CMT. However, since each entry in CAMT
can represent mapping information for multiple pages, the overall
mapping range CAMT can maintain is much larger. To reduce the
memory consumption of the third column, we can use 1 byte for it.
Thus, the maximum number of consecutive pages an entry in CAMT
can maintain is 256. This number is actually much larger than what
we really need in reality. With this strategy, the number of entries in
CAMT is about 8/9 of CMT (if we assume 4 bytes are needed to
represent a logical or a physical address). Furthermore, we can reduce
this ratio by setting only 4 bits for the size column, the number of
column difference can be reduced to 16 out 17. But the number of
consecutive pages an entry can present also reduces to 16.

For GTD architecture, the current version of CAST does not make
any changes. Thus, we do not show it. The improvement is possible
by taking compact address packing strategy as well. Multiple logical-
physical address mapping information in translation pages can be
grouped. Less translation pages are needed. However, GTD has to
be modified as well. This will be conducted in the future work.
Figure 3 also demonstrates the CAST block organization on SSD.
Unlike DFTL which only has one current data block, in CAST,
multiple current data blocks are introduced. As shown in the example,
we make four parallel current data blocks available simultaneously.
With this design, the system has the freedom to choose a suitable
current data block for a newly coming data write/update request.

CAST defines two strategies to select a current data block. The first
one is Issuer-Based Location (IBL). In this approach, when a new
page write request comes, CAMT checks the status of all the current
data blocks. If there is a block has already been used to store the
previous write requests sending from the same issuer, it is chosen
to fulfill the request. If this block still has free space, the data is
written to the first available physical page immediately. If this block
is full, the system has to choose another free empty data block and
adds it to the list of the current data blocks. In case of no empty
block, CAST calls the garbage collection. The garbage collection
process selects some victim data blocks for erase operations. Valid
pages from the victim blocks have to be copied to one of the current
data blocks. Clearly, the efficiency of the victim selection algorithm

Current Data Block Information Table

PBA0

PBA1

PBAk

ISSUER_ID1

ISSUER_ID3

ISSUER_IDK

ISSUER_ID6

ISSUER_ID10

Fig. 4. Data Structures for current data block processing

affects the system overall performance. Various algorithms can be
chosen for this purpose. Currently, CAST uses a simple cost-benefit
analysis adopted from [14] as DFTL. The garbage collection process
continues until enough number of free blocks are generated. After
that, the system selects one free block as a current data block and
updates the current data block list. The full data block is removed
from the list.

In general, the number of available data blocks on SSD is much
higher than the number of active users (issuers), thus we do not have
the problem that a write request cannot find an available current data
block. Even if it happens, the garbage collection operation is called
or we can send the request to another current data block which has
already been used to serve other issuers. In such a scenario, a current
data block may contain data pages belonging to two or more issuers.
In the worst case, it becomes the standard DFTL.

The second strategy is Address-Based Location (ABL). In this
approach, when a write request is coming, we examine the starting
logical address, and choose the current data block which has the
shortest distance (in terms of the address numerical values) to it for
the write operation. Here, CAST takes both the temporal and the
spatial locality among I/O accesses into consideration for better page
grouping results.

Figure 4 shows the structure of the current data block information
table (CDBIT) used for IBL algorithm. An entry contains the Physical
Block Address (PBA) for a data block and also has a pointer to link all
the id information of the issuers associated with that particular current
data block. Typically, since we can define a reasonably large number
of current data blocks, the number of issuers associated with a block
is small. The memory overhead of the CDBIT table is negligible.
Assume we have 100 current data blocks, and each block has 5 entries
on average, then the total number of SRAM memory needed for
CDBIT is only several kilobytes. For ABL model, the similar data
structure is built and the linked list contains all the addresses stored
in a block. If it is a multi-page request, we only record the logical
address of the first page.

In CAST, to achieve the optimal performance, the number of
current data blocks can be dynamically adjusted based on the number
of concurrent issuers. It can be as many as the number of issuers or
even larger. It can also be as small as only 1. In the first case, each

issuer has its own current data blocks and does not mix its write
requests with other issuers. In the latter case, CAST has the same
strategy as DFTL. In reality, a user (issuer) may leave the system
suddenly. However, we do not have to change CDBIT structure when
it leaves. The issuer information is gradually phased out when a
current data block becomes full and is removed from the list.

C. Address Mapping Information Processing
Due to the introduction of the third entry in CAMT, the address

mapping information maintenance operation becomes more complex
than DFTL. For each I/O request, CAST has to check the logical
address range and compare with the logical address ranges in CAMT
entries. Three scenarios may occur, including complete hit, complete
miss and partial hit (and partial miss). In this section, we discuss the
mapping information conversion process in details.

We assume initially CAMT content is shown in Figure 3. When a
read request is coming, CAST checks the starting logical address as
well as the size information to figure out the range of the request, then
it searches CAMT for a match with the given range. The contents
in CAMT after the read operation finishes are shown in Figure 5.
The first one a) describes a complete hit scenario. If the read request
is Read(8,1) (the starting logical address is 8, and the request size
is 1) , a match is found. Both the starting and the ending logical
addresses are inside the address range presented in the second entry
in Figure 3. In this case, no special treatment is taken. CAST simply
returns the corresponding physical page address information (physical
page number 320). A data page read request is issued to the flash
hardware. CAST also updates the mapping information by moving
the second entry to the head of CAMT. The read process finishes.
If the request is Read(9,2), although the starting address is different,
this request is still within the address range of the second entry in
CAMT, the operation is the same except the physical page address
321 is returned.

The second situation is shown in Figure 5 b). It is a partial hit.
In this scenario, the starting logical address of the coming read
request is within the range of the logical addresses represented of the
corresponding entry in CAMT, but the number of pages it demands
go beyond the range. In this case, it means that these logical pages are
not stored in the contiguous physical pages on the flash. For example,
when the request Read(8,8) is coming, CAST finds that there is a
match in CAMT for the first three logical pages. For the last 5 pages,
a cache miss happens. Thus, the system looks up GTD table, and the
corresponding translation pages for the missing data page addresses
are read into the memory. After that, the system issues separate data
page requests according to the physical addresses maintained in the
translation pages. In this example, the last five logical addresses
starting from 11 are stored in the contiguous pages starting from
the physical address 516. After the read operation finishes, CAMT
content has to be updated to reflect the change. Since CAMT is full,
a victim entry has to be selected and evicted from CAMT. We can
use the same LRU algorithm as DFTL for the cache replacement.
In this example, the entry (114, 28, 8) is evicted. For the request
Read(9,7), the operation is the same.

Figure 5 c) represents the second partial hit scenario. Here, a
request Read(6,4) comes. Again, CAST has to consult GTD to find
out the physical page addresses for the logical addresses 6 and 7. In
this example, the physical addresses are 86 and 87. After the system
issues the data page read operations, CAMT content has to be updated
as well. The third type of a partial hit happens if a request Read(6,10)
comes. In this case, the methods used in the previous scenarios can
be combined. So we do not show and explain it here.

If a complete cache miss in CAMT happens when a read request
is coming, for example, a request Read(100,2) comes. The following
steps are executed. First, GTD table is consulted for the translation
pages containing the physical page information for all the logical
addresses in the request. Second, the system issues multiple data
page read operations to fetch the data. Finally, CAMT table has to

SizeLPN

3

1

8

320

200

28114

15

8

PPN

SRAM

a) Read(8,1) or Read(9,2)

SRAM

b) Read(8,8) or Read(9,7)

SizeLPN PPN

SRAM

c) Read(6,4)

15 200 1

8 320 3

6 86 2

200 312 4

LPN PPN Size

3

5

1200

516

3208

15

Compact Address Mapping TableCompact Address Mapping Table Compact Address Mapping Table

200 312 4

11

Fig. 5. CAMT Operation for Read Request (Cache hit)

be updated. If multiple pages are stored contiguously on the flash,
only one entry is created for them in CAMT. In case CAMT is full,
the cache replacement algorithm is executed to evict victim entries.

For read requests, the mapping information does not change.
While for write requests, CAMT operations are a little more complex
because the data has to be written to empty pages in other blocks
and the corresponding mapping information have to be updated. If
there is a cache hit in CAMT, nine situations must be considered.
The description is shown in Figure 6. A simple principle is applied
for all the scenarios. If the system finds out that there are some or all
logical addresses are matching with one or more entries in CAMT, no
translation page read operations are needed for those pages. Only for
those logical addresses which are not present in CAMT, the system
has to consult GTD table and load the translation pages. After the
write request finishes, the pages containing old values have to be
invalidated. Since the new data can be written contiguously in one
of the current data blocks, only one entry is generated and inserted
in CAMT. The translation page update operations in GTD can be
postponed using lazy update strategy to reduce the overhead.

For write requests, if a cache miss happens, the similar operation
as a partial hit (the same operation as for the pages missed in the
cache) is applied. Figure 6 only display how CAMT content changes
in the complete hit and the partial hit scenarios. GTD and GMT
contents are not presented. Owing to the space constraints, we do
not present the write operations in detail.

D. I/O Operations
For data I/O requests including read and write operations, if

the corresponding physical page address information is present, the
process in CAST is the same as other page-level FTL algorithms.
For a read request, CAST is consulted for the corresponding physical
addresses and the system executes the read request thereafter. Since
no data change occurs, only the mapping information in CAMT
table has to be updated. For a write request, an out-of-place data
write operation is generated. CAST chooses a suitable current data
block to write the new data based on the request issuer and/or logical
address information. Either IBL or ABL algorithm can be applied.
Furthermore, the mapping information in CAMT and GTD tables
has to be updated as we described above. As DFTL, we apply lazy
updates to reduce the impact of translation page write operations.

The number of free physical blocks decreases during the system
execution. Over a period, when the system detects that there is no
enough free blocks available, the garbage collector is called to free
some physical blocks. The selection of victim blocks used in previous
FTL designs can also be adopted. Owing to space constraints, we do
not present algorithms for the garbage collection.

IV. PERFORMANCE EVALUATION

To evaluate CAST performance, we conduct extensive simulation
experiments to compare it with other representative FTL algorithms.
In this section, we first describe the experimental environment and
the workload traces used in the experiments. Then present the
experimental results.

Compact Address Mapping Table

SizeLPN PPN

SRAM

Compact Address Mapping Table

SizeLPN PPN

SRAM

Compact Address Mapping Table

SizeLPN

1

8

200

28114

15

8

PPN

SRAM

Compact Address Mapping Table

SizeLPN PPN

SRAM
c) Write(8,8)

570 8

d) Write(9,1)

1

1

1

15709

e) Write(9,2)

1

2

1

5709

f) Write(9,8)

1

1

9 570 8

Compact Address Mapping Table

SizeLPN PPN

SRAM

Compact Address Mapping Table

SizeLPN

1

8

200

28114

PPN

SRAM

Compact Address Mapping Table

SizeLPN

1

8

200

28114

PPN

SRAM

g) Write(6,3)

36 570 570 56

15

h) Write(6,5)

570 86

15

i) Write(6,8)

Compact Address Mapping Table

SizeLPN

8

PPN

312

1

4

570 2

1

b) Write(8,2)

SRAM

Compact Address Mapping Table

Size

3

1

8

200

28114

15

PPN

8

LPN

570

a) Write(8,3)

SRAM

10

15

322

200

8

15

320

200

10

15

8

322

320

200 15

8

200

320

9

15

321

200 1

2

200

200 312 4 200 312 4

200 312 4

Fig. 6. CAMT Operation for Write Request (Cache hit)

A. Experimental Setup
We use FlashSim [8] to conduct simulation experiments. FlashSim

is a simulator for NAND flash based SSDs. It defines SSD, Pack-
age, Die, Plane, Block and Page classes to represent the hardware
components, and also include Events, Address, FTL, Wear-leveler
and Garbage collector classes for software components. It takes an
object oriented component design, which allows an easy extension
to evaluate new FTL schemes and other software components. It has
been widely used in many research works as the default simulator
for FTL experiments.

In this paper, we compare CAST with DFTL and FAST, the
two representative FTL designs in page-level and hybrid mapping
schemes. We use four sets of the real world I/O traces to measure
the performance. The detailed description about the workload traces
is shown in Table II. Due to the lack of the request issuer information
in the traces, in all our experiments, we use ABL approach to select
a current data block for CAST algorithm.

B. Average Response Time
In the first set of simulation experiments, we compare the average

response time of various FTL schemes. Figure 7 shows the normal-
ized results. The value 1 means the performance of each scheme
is comparable to that of FAST. From the results, we observe that
for the first three workloads, DFTL and CAST outperform FAST.
Both of them have much smaller average response times. This is
because these workloads have a large number of data write operations.
As a hybrid FTL design, FAST uses log blocks to record all the
new data before flushing to data blocks, a high percentage of write
requests means that data migrations between log blocks and data
blocks happen frequently. Because of the expensive full and partial
merge operations, the associated cost is very high. While for page-
level mapping FTL algorithms DFTL and CAST, only partial merge
operations are necessary, and the total number is not as much as
FAST.

0

0.2

0.4

0.6

0.8

1

1.2

MSR Financial1 Laptop WebSearch2

N
o

rm
al

iz
ed

 A
ve

ra
ge

 R
es

p
o

n
se

 T
im

e
 FAST DFTL CAST

Fig. 7. The Average Response Time Comparison

Among three workloads, DFTL and CAST have the best perfor-
mance gain for MSR, while have the least improvement for Laptop
workload. We can draw the conclusion that the higher the read
request ratio, the less benefit we can achieve using a page-level FTL
algorithm. Surprisingly, for the read dominant workload WebSearch2,
FAST has a lower average response time than DFTL and CAST. The
reason is that because the majority of the I/O operations are reads,
very few data writes are taken. In FAST, few data flush operation
happens between log blocks and data blocks. The merge cost is
reduced significantly. For DFTL and CAST algorithms, an extra
translation page read/write overhead occurs. Thus, they have worse
performance than FAST. However, the difference is very small. DFTL
only adds 9.05% extra time and CAST only adds 3.27%.

Compare CAST with DFTL, CAST outperforms DFTL in all
workloads. We believe this is because of the compact address
mapping strategy and multiple current data blocks used in CAST.
In general, we find that the larger the average request size, the
better performance CAST can achieve. For Laptop trace, since it
has the largest average request size, the performance gain is the
highest, CAST reduces the average response time to 66.23% of that
in DFTL. For MSR and Financial1 traces, the numbers are 75.49%
and 87.02%, respectively. For WebSearch2 workload with almost all
the read requests, CAST still can achieve performance gain from the
large request size because CAMT can cover much wider range of
address mapping information than CMT in DFTL. However, in this
case, most extra translation page I/Os in DFTL algorithm are less-
expensive flash reads, the performance gain in CAST is not very
obvious. CAST has about 96.70% average time of that in DFTL.

C. Erase Count
In the second set of experiments, we compare the number of erase

operations in these FTL schemes. We do not show the numbers
for WebSearch2 workload because it has 99.97% read requests, the
number of erase operations are very small in any FTL algorithms.
Figure 8 presents the results. As we can observe, CAST has the
minimal number of erases compare to other approaches. FAST has
the worst performance for all three workloads. This is due to the
inherited nature of hybrid algorithm. A full merge operation could
result in multiple block erase operations. The higher the write request
number, the more merge operations may occur. The average request
size also has the impact on the performance. The smaller the size, the
less spatial locality among requested pages can be utilized, and the
data tend to be more scattered, the garbage collection performance
becomes worse.

For Financial1 trace, FAST algorithm has the largest number of
erase operations because of the high write request number and small
average request size. Even for DFTL and CAST algorithms, although
both of them work better than FAST, their performance is worse than
that in other two workloads. All three FTL algorithms achieve the

0

20

40

60

80

MSR Financial1 Laptop

Er
as

e
C

o
u

n
ts

 (
x1

00
0)

FAST DFTL CAST

Fig. 8. The Number of Erase Operations Comparison

lowest number of erase counts for Laptop workload. We believe this
is because Laptop trace has the largest request size and also highest
read request ratio.

In all three workloads, CAST has lower erase counts than DFTL
by 3.11% to 7.53%. This performance gain comes mainly from the
fact that the CAST design can cover larger range of address mapping
information, thus a substantial translation page modifications opera-
tions can be avoided if there is a cache hit in CAMT. Furthermore, by
taking the multiple current data block approach, for CAST algorithm,
the valid page copy overhead in the garbage collection process is
lower, and hence the number of erase operations decreases.

D. Extra Read/Write Operation Comparison
Due to the translation pages stored on the flash memory, both

DFTL and CAST introduce extra I/O accesses. In this experiment,
we compare the overhead of these two approaches. The results are
depicted in Table III.

TABLE III
THE NUMBER OF EXTRA I/OS FOR TRANSLATION PAGES

DFTL DFTL CAST CAST
Read Write Read Write

MSR 107863 102357 43497 41208
Financial1 83479 76128 52379 50128

Laptop 129379 78826 22274 21279
WebSearch2 99486 687 34989 238

From the results, we can see that due to the introduction of the
compact address mapping strategy, CAST can significantly reduce the
number of translation page read/write operations. For all the traces,
CAST can reduce the number of translation page reads by up to
300% and reduce the number of translation page writes by 225%.
Overall, for Financial1 trace, CAST has the lowest improvement
because the average request size is the smallest. Thus, the benefit we
can achieve is limited. However, even in this case, the I/O overhead
in CAST is reduced by 51.86% (for write) to 59.37% (for read).
For workloads with a larger average request size such as Laptop
and WebSearch2, the performance gain is much higher for both read
and write operations. Furthermore, CAST appears to benefit more
from workloads with higher read ratios. For example, the percentage
of translation page I/O reduction in Laptop trace is much higher
than both MSR and Financial1 workloads. For the read dominant
workload WebSearch2, both DFTL and CAST have very few number
of translation page write overheads. Since the flash memory has
asymmetric read/write access latency and the read latency is much
lower than write latency, WebSearch2 has the minimal mapping
overhead.

E. Impact of SRAM Size
The amount of SRAM we can use to store logical-physical

mapping information also affects the performance. In this experiment,
we change the amount of SRAM allocated for the caching and check
its impacts on CAST performance. The result is shown in Figure 9.

As we can observe from the result, the SRAM size has great
impacts on the caching performance. With the increase of SRAM
size, the performance gap between DFTL and CAST also increases.
This is because with a larger size, the mapping address range
difference between CAST and DFTL also increases, thus the cache
hit rates in CAMT (in CAST) increases faster than CMT (in DFTL).
Because Laptop workload has the largest average request size,
CAST presents the best performance improvement. It can reduce the
average response time by 8.74% (64KB) to 41.73% (2MB). MSR
workload also presents very good performance. For Financial1 trace,
the performance improvement is not as outstanding as the other
two workloads because of the relatively small average request size.
For read dominant WebSearch2 trace, although CAST can reduce
the number of translation page I/O remarkably, the performance
difference between CAST and DFTL is not very visible due to the
relatively low latency for translation page read operations.

We also conduct other simulation experiments such as the com-
parison of the hit rates in the caching tables, the average number of
valid pages in the erased blocks, etc. Due to the lack of space, we
do not include them here.

V. RELATED WORKS

FTL has great performance impacts on the NAND flash based
SSDs. Numerous works have been proposed from both academic and
industry communities on FTL design. Block-level mapping scheme
[15] was used in the early days. It adopts a similar approach as the set-
associative cache design, and is not suitable for large capacity SSDs
due to the excessive garbage collection cost. Thus, it has not been
applied in modern SSDs. Page-level and hybrid mapping FTLs are the
mainstream mechanisms used today. Hybrid mapping schemes aim to
preserve the advantages of small memory requirements for translation
in block-level mapping and achieve the data management flexibility
in page-level mapping. All the hybrid mapping algorithms share the
same strategy. They divide the flash into data blocks and log blocks,
using different mapping granularities for these two partitions. The
write/update operations are stored in log blocks first before flushing
into the data blocks.

In Block Associative Sector Translation (BAST) [16], each log
block is associated with a certain data block exclusively. It can
only records the data updates on this particular data block. Such
an approach has a big drawback, it has very low block utilization
in the presence of small random writes. To relieve this problem,
Fully Associative Sector Translation (FAST) [17] goes to the other
extreme, it allows a log block to be shared among all the data blocks.
However, it fails to provide an effective management strategy for
multiple sequential writes, and cannot fully utilize the access locality
in random streams. In the worst case, the degree of sharing in FAST
is identical to the number of pages within a block. This tends to
increase the merge cost. Many hybrid schemes such as Superblock
FTL [18], SAST (Set Associative Sector Translation) [19], LAST
(Locality-Aware Sector Translation) [20], A-SAST (Adaptive SAST)
[21], KAST (K-Associative Sector Translation) [22] and Janus-FTL
[23] are proposed to achieve a balance between the log block
utilization and the garbage collection overhead. However, none of
them can completely remove the expensive full merge and partial
merge operations due to the inherited nature of block-level mapping
algorithms.

Page-level mapping strategies [24] provide more flexible data
management methods, and have lower garbage collection overhead.
The full merge operations have been completely removed. LazyFTL
[25] uses a two-layer mapping structure for cold data while uses

0

0.2

0.4

0.6

0.8

1

1.2

64KB 128KB 256KB 512KB 1M 2M

N
o

r
m

a
li

z
e

d
 A

v
e

r
a

g
e

 R
e

s
p

o
n

s
e

 T
im

e

SRAM SIZE

a) MSR Trace

DFTL CAST

0

0.2

0.4

0.6

0.8

1

1.2

64KB 128KB 256KB 512KB 1M 2M

N
o

r
m

a
li

z
e

d
 A

v
e

r
a

g
e

 R
e

s
p

o
n

s
e

 T
im

e

SRAM SIZE

b) Financial1 Trace

DFTL CAST

0

0.2

0.4

0.6

0.8

1

1.2

64KB 128KB 256KB 512KB 1M 2M

N
o

r
m

a
li

z
e

d
 A

v
e

r
a

g
e

 R
e

s
p

o
n

s
e

 T
im

e

SRAM SIZE

c) Laptop Trace

DFTL CAST

0

0.2

0.4

0.6

0.8

1

1.2

64KB 128KB 256KB 512KB 1M 2M

N
o

r
m

a
li

z
e

d
 A

v
e

r
a

g
e

 R
e

s
p

o
n

s
e

 T
im

e

SRAM SIZE

d) WebSearch2 Trace

DFTL CAST

Fig. 9. The Impact of SRAM Size on the Average Response Time (Normalized to DFTL)

a direct mapping table for hot data. LazyFTL reserves two small
partitions, the CBA and the UBA, to delay mapping information
modifications caused by write requests or valid page movements.
Like LazyFTL, CAST also adopts the page-level mapping scheme.
It reduces the mapping information maintenance overhead with the
compact address packing strategy. The performance in CAST can be
further improved by adopting cold/hot data division mechanisms as
LazyFTL.

There are many other FTL designs. WAFTL [26] explores either
page-level or block-level address mapping for normal data block
based on access patterns. MFTL [27] proposes a file system aware
design. It separates metadata and user data requests, uses different
address mapping mechanism to deal with them. Such an approach
reveals the importance to take the file system level information into
FTL, and should be considered. An interesting approach introduced
in [28] defines the ”excess indirection” problem, aims to remove the
heavy overhead incurred with FTL translation. It uses a nameless
write approach, which means the client has to deal with the physical
addresses directly. Although it can improve the performance, it raises
more maintenance issues. Delta-FTL [29] reduces the number of
writes to the flash via exploiting the content locality between the
write data and its corresponding old version in the flash. CAFTL
[30] builds a content aware approach to reduce the write traffic by
removing unnecessary duplicate writes and enhance the endurance
of SSDs at the device level. CAST can integrate these strategies to
further improve the performance.

Other works [31], [32], [33] focus on exploiting system RAM
as a write buffer to improve the I/O response time and reduce the
number of block erase operations. In [34], Park et al. propose the
Clean-First LRU (CFLRU) replacement algorithm. They consider the
fact that the flash memory has asymmetric read and write costs and
CFLRU tries to reduce the number of costly writes and potential erase
operations by trading of the number of reads. However, CFLRU does
not address the small random write problem. In [35], the authors
propose BPLRU, a novel buffer management algorithm. It groups
pages based on their corresponding erase blocks and sort them in a
LRU manner. It employs a novel technique called page padding, by
reading some pages from flash memory and writing them sequentially
in the victim block when a replacement operation occurs. Thus,
BPLRU converts many expensive full merge operations into light
switch merge operations. PUD-LRU [36] makes more improvements
by differentiating blocks and judiciously destages blocks based on
their frequency and recency so as to avoid the unnecessary erases
due to repetitive updates. All these approaches are orthogonal to
the underlying FTL algorithms, and can be integrated with any
underlying FTL scheme.

Some researchers view the SSD as an enhancement instead of
complete replacement for magnetic disks. This is mainly because of
its relatively higher cost and lower capacity comparing with the state-
of-the-art HDDs. In [37], the authors consider SSD as supplementary
to current storage hierarchy, and view it as another tier between the

main memory and the magnetic hard disks. However, even in this
scenario, an efficient FTL algorithm is needed to achieve satisfactory
performance.

VI. CONCLUSIONS AND FUTURE WORK

A major drawback in the pure page-level FTL approaches is the
high demand for precious SRAM resources. DFTL introduces Global
Mapping Table to take advantages of idle block spaces on SSD to
relieve the pressure. However, such a design results in extra I/O
operations on translation pages. For workloads with heavy random
access patterns, the mapping cache table hit rate is low and DFTL
cannot achieve the satisfactory performance. Furthermore, the single
current data block design hurts the garbage collection performance
in a multi-user environment.

In this paper, we propose CAST, a novel page-level mapping FTL
algorithm to address these issues. In CAST, with the same amount
of SRAM space reserved, the range of the logical-physical address
mapping information it can maintain is much larger than DFTL.
We also use multiple parallel current data blocks to better distribute
the write requests. CAST has the following benefits compare to the
previous page-mapping algorithms. First, with the increased cache
hit rates in the enhanced caching table, the average access latency
is greatly reduced, especially for the workloads with random access
behaviors. The I/O overhead to access translation pages is decreased
as well. Second, the multiple current data block strategy allows the
system to better arrange the pages with similar access behaviors in the
same block, and consequently make the block erase operations more
effective. Our simulation experiments prove that CAST has smaller
number of block erase operations and lower average I/O response
times compared with other FTL algorithms.

In the future, we plan to investigate the potentials of more accurate
page grouping strategies and discover the possible improvement
over global translation directory as well. We will also develop the
techniques to integrate with semantic aware FTL designs to further
improve the performance. Finally, we plan to implement CAST on
the flash hardware and conduct the real world measurement study.

ACKNOWLEDGMENTS

This work is supported by National Natural Science Foundation
of China under grants 61173170 and 60873225, National High
Technology Research and Development Program of China under
grant 2007AA01Z403, and Innovation Fund of Huazhong University
of Science and Technology under grants 2012TS052 and 2012TS053.

REFERENCES

[1] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D. Davis, Mark
Manasse, and Rina Panigrahy, “Design tradeoffs for ssd performance,”
in USENIX 2008 Annual Technical Conference on Annual Technical
Conference, Berkeley, CA, USA, 2008, ATC’08, pp. 57–70, USENIX
Association.

[2] Feng Chen, David A. Koufaty, and Xiaodong Zhang, “Understanding
intrinsic characteristics and system implications of flash memory based
solid state drives,” in Proceedings of the eleventh international joint
conference on Measurement and modeling of computer systems, New
York, NY, USA, 2009, SIGMETRICS ’09, pp. 181–192, ACM.

[3] Sang-Won Lee and Bongki Moon, “Design of flash-based dbms: an
in-page logging approach,” in Proceedings of the 2007 ACM SIGMOD
international conference on Management of data, New York, NY, USA,
2007, SIGMOD ’07, pp. 55–66, ACM.

[4] Sang-Won Lee, Bongki Moon, Chanik Park, Jae-Myung Kim, and
Sang-Woo Kim, “A case for flash memory ssd in enterprise database
applications,” in Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, New York, NY, USA, 2008,
SIGMOD ’08, pp. 1075–1086, ACM.

[5] “Flash drives replace disks at amazon, facebook, dropbox,” http://www.
wired.com/wiredenterprise/2012/06/flash-data-centers, 2012.

[6] The Tech Report, “Ssd price trend,” http://techreport.com/discussions.x/
23160, 2012.

[7] Micron Technology Inc., “Nand flash datasheet,” http://www.micron.
com/products/nand-flash/mass-storage, Aug. 2012.

[8] Kim Youngjae, Tauras Brendan, Gupta Aayush, and Urgaonkar Bhuvan,
“Flashsim: A simulator for nand flash-based solid-state drives,” in
Proceedings of the 2009 First International Conference on Advances
in System Simulation, Washington, DC, USA, 2009, pp. 125–131, IEEE
Computer Society.

[9] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar, “DFTL: a flash
translation layer employing demand-based selective caching of page-
level address mappings,” in Proceedings of the 14th international
conference on Architectural support for programming languages and
operating systems, New York, NY, USA, 2009, ASPLOS ’09, pp. 229–
240, ACM.

[10] Ramakrishna Karedla, J. Spencer Love, and Bradley G. Wherry,
“Caching strategies to improve disk system performance,” Computer,
vol. 27, no. 3, pp. 38–46, March 1994.

[11] Storage Networking Industry Association (SNIA), “1999 traces of cello
server at hp labs,” http://iotta.snia.org/tracetypes/3, 1999.

[12] Amherst Laboratory for Advanced System Software, University of Mas-
sachussetts, “Umass trace repository,” http://traces.cs.umass.edu/index.
php/Storage/Storage.

[13] Microsoft Coorporation, “Windows sysinternals,” http://technet.
microsoft.com/en-us/sysinternals.

[14] Atsuo Kawaguchi, Shingo Nishioka, and Hiroshi Motoda, “A flash-
memory based file system,” in Proceedings of the USENIX 1995 Tech-
nical Conference Proceedings, Berkeley, CA, USA, 1995, TCON’95,
pp. 13–13, USENIX Association.

[15] A. Ban and R. Hasharon, “Flash file system optimized for page-mode
flash technologies,” United States Patent No. 5,937,425, Aug. 1999.

[16] Tae-Sun Chung, Dong-Joo Park, Sangwon Park, Dong-Ho Lee, Sang-
Won Lee, and Ha-Joo Song, “System software for flash memory: a
survey,” in Proceedings of the 2006 international conference on Em-
bedded and Ubiquitous Computing, Berlin, Heidelberg, 2006, EUC’06,
pp. 394–404, Springer-Verlag.

[17] Lee Sang-Won, Park Dong-Joo, Chung Tae-Sun, Lee Dong-Ho, Park
Sangwon, and Song Ha-Joo, “A log buffer-based flash translation layer
using fully-associative sector translation,” ACM Trans. Embed. Comput.
Syst., vol. 6, July 2007.

[18] Dawoon Jung, Jeong-UK Kang, Heeseung Jo, Jin-Soo Kim, and Joon-
won Lee, “Superblock ftl: A superblock-based flash translation layer
with a hybrid address translation scheme,” ACM Trans. Embed. Comput.
Syst., vol. 9, pp. 40:1–40:41, April 2010.

[19] Chanik Park, Wonmoon Cheon, Jeonguk Kang, Kangho Roh, Wonhee
Cho, and Jin-Soo Kim, “A reconfigurable ftl (flash translation layer)
architecture for nand flash-based applications,” ACM Trans. Embed.
Comput. Syst., vol. 7, no. 4, pp. 38:1–38:23, Aug. 2008.

[20] Sungjin Lee, Dongkun Shin, Young-Jin Kim, and Jihong Kim, “Last:
locality-aware sector translation for nand flash memory-based storage
systems,” SIGOPS Oper. Syst. Rev., vol. 42, no. 6, pp. 36–42, Oct.
2008.

[21] D. Koo and D. Shin, “Adaptive log block mapping scheme for log
buffer-based ftl (flash translation layer),” in International Workshop on
Software Support for Portable Storage, Grenoble, France, Oct. 2009,
IWSSPS ’09.

[22] Hyunjin Cho, Dongkun Shin, and Young Ik Eom, “Kast: K-associative
sector translation for nand flash memory in real-time systems,” in

Proceedings of the Conference on Design, Automation and Test in
Europe, 3001 Leuven, Belgium, Belgium, 2009, DATE ’09, pp. 507–
512, European Design and Automation Association.

[23] Hunki Kwon, Eunsam Kim, Jongmoo Choi, Donghee Lee, and Sam H.
Noh, “Janus-ftl: finding the optimal point on the spectrum between
page and block mapping schemes,” in Proceedings of the tenth ACM
international conference on Embedded software, New York, NY, USA,
2010, EMSOFT ’10, pp. 169–178, ACM.

[24] Amir Ban, “Flash file system,” United States Patent, no. 5,404,485,
1995.

[25] Dongzhe Ma, Jianhua Feng, and Guoliang Li, “Lazyftl: a page-level
flash translation layer optimized for nand flash memory,” in Proceedings
of the 2011 ACM SIGMOD International Conference on Management
of data, New York, NY, USA, 2011, SIGMOD ’11, pp. 1–12, ACM.

[26] Qingsong Wei, Bozhao Gong, Suraj Pathak, Bharadwaj Veeravalli,
LingFang Zeng, and Kanzo Okada, “Waftl: A workload adaptive flash
translation layer with data partition,” in Proceedings of the 2011
IEEE 27th Symposium on Mass Storage Systems and Technologies,
Washington, DC, USA, 2011, MSST ’11, pp. 1–12, IEEE Computer
Society.

[27] Po-Liang Wu, Yuan-Hao Chang, and Tei-Wei Kuo, “A file-system-aware
ftl design for flash-memory storage systems,” in Proceedings of the
Conference on Design, Automation and Test in Europe, 3001 Leuven,
Belgium, Belgium, 2009, DATE ’09, pp. 393–398, European Design and
Automation Association.

[28] Yiying Zhang, Leo Prasath Arulraj, Andrea C. Arpaci-dusseau, and
Remzi H. Arpaci-dusseau, “De-indirection for flash-based ssds with
nameless writes,” in Proceedings of the 10th USENIX conference on
File and storage technologies, 2012, FAST’12.

[29] Guanying Wu and Xubin He, “Delta-ftl: improving ssd lifetime via
exploiting content locality,” in Proceedings of the 7th ACM european
conference on Computer Systems, New York, NY, USA, 2012, EuroSys
’12, pp. 253–266, ACM.

[30] Feng Chen, Tian Luo, and Xiaodong Zhang, “Caftl: a content-aware
flash translation layer enhancing the lifespan of flash memory based
solid state drives,” in Proceedings of the 9th USENIX conference on
File and stroage technologies, Berkeley, CA, USA, 2011, FAST’11, pp.
6–6, USENIX Association.

[31] Song Jiang and et al., “Dulo: An effective buffer cache management
scheme to exploit both temporal and spatial localities,” in IN USENIX
CONFERENCE ON FILE AND STORAGE TECHNOLOGIES (FAST,
2005.

[32] Heeseung Jo, Jeong-Uk Kang, Seon-Yeong Park, Jin-Soo Kim, and
Joonwon Lee, “Fab: flash-aware buffer management policy for portable
media players,” Consumer Electronics, IEEE Transactions on, vol. 52,
no. 2, pp. 485 – 493, may 2006.

[33] Hyotaek Shim, Bon-Keun Seo, Jin-Soo Kim, and Seungryoul Maeng,
“An adaptive partitioning scheme for dram-based cache in solid state
drives,” Mass Storage Systems and Technologies, IEEE / NASA Goddard
Conference on, vol. 0, pp. 1–12, 2010.

[34] Seon yeong Park, Dawoon Jung, Jeong uk Kang, Jin soo Kim, Joonwon
Lee, Seon yeong Park, Dawoon Jung, Jeong uk Kang, Jin soo Kim,
and Joonwon Lee, “Cflru: a replacement algorithm for flash memory,”
in In CASES 06: Proceedings of the 2006 international conference on
Compilers, architecture. 2006, pp. 234–241, ACM Press.

[35] Hyojun Kim and Seongjun Ahn, “BPLRU: a buffer management scheme
for improving random writes in flash storage,” in Proceedings of the 6th
USENIX Conference on File and Storage Technologies, Berkeley, CA,
USA, 2008, FAST’08, pp. 1–14, USENIX Association.

[36] Jian Hu, Hong Jiang, Lei Tian, and Lei Xu, “Pud-lru: An erase-
efficient write buffer management algorithm for flash memory ssd,” in
Proceedings of the 2010 IEEE International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems,
Washington, DC, USA, 2010, MASCOTS ’10, pp. 69–78, IEEE Com-
puter Society.

[37] Adam Leventhal, “Flash storage memory,” Commun. ACM, vol. 51, pp.
47–51, July 2008.

